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Abstract—Intelligent mobile robotic agents demand optimal
motion planners with minimum query time. Most contemporary
algorithms lack one of these two required aspects. This paper
proposes a cellular automata (CA) based efficient path planning
scheme that generates optimal paths in minimum time. A Cellular
automata is evolved over the entire environment and subsequently
used for shortest path determination. This approach generates a
parent-child relationship for each cell in order to minimize the
search time. Analysis and simulation results have proven it to be
a robust, complete path planning scheme and time efficient both
in static and dynamic environments.

I. INTRODUCTION

Path planning is an essential constituent of the design of

an intelligent mobile robot. The field of motion planning has

been explored in detail by researchers in the past two decades

with the aim to develop an algorithm that shows convergence

to optimal path in minimum possible time. This work is aimed

at developing an efficient path planner that provides shortest

path from robot to goal location.

Visibility graphs[1,2] and Voronoi diagrams[3] are among

one of the earlier techniques explored for optimal path

search.These algorithms gave promising results but they were

mainly developed for static environments.Furthermore, visibil-

ity graph is a computationally expensive algorithm and hence

can’t be used in real time systems. Also, Voronoi diagrams

fail to provide optimal solution. Another class of algorithms

developed for this purpose are cell decomposition methods[4].

However computational efficiency of cell decomposition tech-

niques is highly dependent upon the size of the cells, thereby

making it an inefficient algorithm for real time usage. Another

approach is the use of Potential Field [5] methods which

provides assuring results in most cases but fails in some

specific situations where attractive and repulsive fields tend

to cancel out each other i.e. local minima[6].

In order to overcome the problems posed to above men-

tioned algorithms, probabilistic approaches namely PRM’s[7]

and RRT’s[8,9] were developed. These algorithms are capable

of finding paths in complex environments but due to their

probabilistic nature they do not provide optimal solutions.

Furthermore their sampling strategies tend to become complex

in case of narrow passages.It has been proven that RRT does

not approach optimality whereas RRT*[10] requires an infinite

number of iterations to converge to optimality.

More recently machine learning paradigms are being uti-

lized for global obstacle free path search.One of the major

advances in this paradigm are use of genetic algorithms[11,12]

and fuzzy based[13,14] approaches for extraction of global

collision free paths. Another promising learning paradigm for

this problem is the use of neural networks[15]. The problem

with these approaches is that they require large database to

learn and generalize. It is mostly difficult and sometimes

impossible to provide such kind of data. However an exception

to the rule is the use of Modified Pulse Coupled Neural

Network (MPCNN)[16]. It is capable of path planning in

arbitrarily complex environments and is proven to provide

a global shortest paths. The problem with this technique is

that it is computationally inefficient. A comparison with this

technique is presented in the results section.

Finite automata is a class of algorithms with discrete input

and outputs. Cellular automata[17] are a special class of

finite automata which constitutes n-dimensional array of cells

wherein each cell can take a set of possible values. Path

planning using cellular automata has been previously addressed

and a straight moving path planner has been proposed in [19]

which derives its strategy from a multi agent path planning

architecture using cellular automata [18]. However, this ap-

proach does not provide an optimal solution since it requires

an elaborate search of the environment which degrades the

efficiency of the method. Another similar sub-optimal approach

that utilizes cellular automata is given by Behring et. al [20].

A case in which a diamond shaped robot is considered for

navigation in a 2D environment using cellular automata is

presented in [21]. In this strategy cellular automata is used

to determine cells that are equidistant from obstacles which

later determines the path of robot. Since the path is required

to be equidistant from all obstacles therefore it results in a

non-optimal solution.

This paper presents a cellular automata based approach to

compute the shortest path in a 2D configuration space. Rule

based exploration of the environment is coupled with parent-

child relationships for each cell to simplify the search process.

Simulations have verified it to be an efficient method both in

the presence of static as well as dynamic obstacles.

Rest of the paper is organized as follows. Section II

discusses the environmental setup and a preprocessing for the
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proposed method. Section III explains the proposed algorithm

in detail.Pseudo code of the given method is presented in

section IV. Next section V presents the results and sectionVI

concludes this paper.

II. CONFIGURATION SPACE

The space of all possible configurations of a robot is called

the configuration space[24]. Consider a robot R navigating in

a 2-D Euclidean space, where the set of all possible configura-

tions of the robot are represented by the set Q= {q1,q2, ....,qn}
and the set of obstacles is represented by O= {O1,O2, ....,On}.

Then the configuration space can be modeled as a continuous

mapping represented by τ : [0,1]→ Q, where τ(0) = qinit and

τ(1) = qgoal . The path planning problem is to find a path in

the configuration space such that no configuration of the robot

collides with the obstacles. In other words, the problem is to

find a set of configurations of the robot from qinit to qgoal in

the free configuration space where

Q f ree = {q ∈ Q |R(q)∩ (
n⋃

i=1

Oi) = φ} (1)

Since the Robot can be of any arbitrary shape in the

workspace, the profile of the robot needs also to be consid-

ered in the configuration space. This is done by taking the

Minkowski Sum [22] of the profile of the robot R with every

obstacle Oi. Hence every obstacle in the configuration space

is remodeled such that

R⊕Oi = {x+ y |x ∈ R,y ∈ Oi} (2)

Since the shape of the robot has been catered, the robot can

now be considered as a point robot in the configuration space.

III. CELLULAR AUTOMATA MODEL

Cellular automata are a four tuple, decentralized, discrete

space-time systems defined over a cellular space[18]. Cellular

automata consist of a cellular space consisting of a large

number of locally connected identical entities, where each

entity is updated based on a set of transition rules.

Cellular Automata are formally defined as quadruples

(d,q,N, f ), where

d Dimension of the cellular automata.

q Set of possible states of cellular automaton.

N Set of relative positions of neighboring cells.

f Local function defining the local transition rule.

In the proposed algorithm, the CA architecture consists of

a 2-D lattice of cells. Each cell constitutes of a six element

tuple, which are used in the evaluation of the local transition

function. These are

(Sstate,Sc f ,Sp f , ton,P(i, j),φs)

where

Sstate Current state of the cell. 0 for off, 1 for on.

Sc f Child Flag. High if the cell is a child.

Sp f Parent Flag. High if the cell is a Parent.

ton Time at which the cell transitioned to active state.

Fig. 1: The Moore Neighborhood

P(i, j) Address of the parent cell.

φs Maintains the accumulative cost from Goal to the

current cell.

Cells are interconnected with the local neighborhood within

the constraints of the 8-nn (nearest neighbors), which is also

called type-II neighborhood or the Moore Neighborhood[17]

which, for example, consists of nine sites for d = 2, as shown

in Fig. 1
The activation of each automaton is governed by the fol-

lowing transition rules:
Rule: 1 - The current cell will only become active if and

only if one of the neighboring cell is in active state and the

ton of the neighboring cell causing it to activate must be less

than t (where t is the time of the current iteration). Otherwise,

it will remain quiescent.

St
state(i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 i f f ∃St
state(i+m, j+n) = 1

& ton (i+m, j+n)< t
m,n ∈ {1,−1}

0 otherwise

(3)

Rule: 2 - A cell will only become a child of another cell if

the other cell is already in active state with a ton < t.

St
c f (i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 i f f ∃St
state(i+m, j+n) = 1

& ton (i+m, j+n)< t
m,n ∈ {1,−1}

0 otherwise

(4)

Rule: 3 - A cell will only become a parent cell iff it is

active, it is already a child and its ton < t.

St
p f (i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 i f f ∃St
state(i, j) = 1

& St
c f (i, j) = 1

& ton (i, j)< t
0 otherwise

(5)

Rule: 4 - A cell will only become a child of a neighboring

cell with lowest accumulative cost function.

φs(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min(φs(i+m, j+n)+δ ) i f f
∃St

state(i+m, j+n) = 1

& St
p f (i+m, j+n) = 0

m,n ∈ {1,−1}
0 otherwise

(6)
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Fig. 2: Solution of a complex maze using CA.

where δ is the cost of connecting current cell S(i, j) with the

neighboring cell. The costs are

δ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|1| ∀S(i+m, j),S(i, j+n)
m,n ∈ {−1,1}

|√2| ∀S(i+m, j+n)
m,n ∈ {−1,1}

Rule: 5 - A cell will remember the address of its parent cell

as calculated in Rule (4).

P(i, j) = {(r,s)|φs(i, j) = min(φs(r,s)+δ )} (7)

A. Completeness of the Algorithm

The proposed algorithm is a complete algorithm i.e. if a

solution exists, it will find it, otherwise it’ll assert that no

solution exists. At every iteration, the algorithm keeps a count

of the no. of cells which were activated during that iteration.

If, for an iteration, none of the cell is activated, this means that

there are no more cells which can be activated, and hence no

path exists. On the other hand, as soon as the algorithm finds

a path from the goal to the robot, it is the optimal path which

is declared as output.

To prove it, we suppose that the contrary is true, i.e.

the algorithm is not complete. Therefore, there exists a path

from start to goal, but the algorithm couldn’t find it. For this

statement to be true, either the algorithm never terminates, or

it terminates incorrectly.

Suppose it never terminates. But at any instant, if a parent

child relationship could be built, a new cell will be activated.

According to Rule 4, a situation can arise where there is no

other neighbor left with an accumulative cost lower than the

current parent. Also there might be no cell in the neighborhood

which is in quiescent state. Hence if there is no possible parent

child relationship left, no cell will be activated. If no cell is

activated, the algorithm will declare that no path exists from

start to goal, and will terminate.

Suppose it terminates incorrectly. According to Rule

1, a cell can only become active if its neighboring cell was

active. Also the obstacle cells are configured to be permanently

off. Hence an obstacle cell will never become a child, and

according to Rule 3, it will never become a parent as well.

Since an obstacle cell will never be activated, the resultant

path will never end inside an obstacle. Also, since no cell

can become active if its neighbors are not active according to

Rule 1, only successive parent child relationships are created,

which only terminate when the start point and goal point are

connected, and hence produce a continuous path from start to

goal.

Since both the above statements have been proved false, the

opposite is true, i.e. the algorithm is complete.

IV. THE ALGORITHM

To plan a path using the proposed technique, all the cells

are initialized according to their state of occupancy. Obstacles

are initialized as NaN and free space as state zero. Algorithm

proceeds with the switching of states in outward fashion

from goal location un till robot cell is reached. In the next

step path is extracted from robot to target using parent child

relationships.

Computation steps of the algorithm are as under:

1) Initialization:

∀S ∈ qobstacle=NaN, ∀S ∈ q f ree=0, Starget = 1,Sc f = true,
φtarget = 0, ttarget

on = 0 and P(i, j) = (i, j)
2) Cellular Automata Iterations:

Repeat

Initialize firing count to zero.

For each cell

a) if(St
state == 0)

result=Execute rule 1 using (3).

if(result==true)

Set ton for current cell.

Set child flag using rule 2 as given by (4).

Update cost of current cell using (6).

Configure parent of current cell using (7).

Increment firing count.

else

continue
else

if (Sp f == false)

if (ton < t)
Configure Sp f using (5)

if (Srobot==1)

return path

else if (firing count == 0 )

return failure

V. RESULTS

In order to gauge the performance of the proposed algorithm

we tested it in both static as well as dynamic environments.In

our experiments it has demonstrated efficient in terms of time

and provides optimal paths. Some of these results are discussed

here. In all the subsequent figure red represents a robot, blue

shows the target configuration, black shows obstacles while

green shows the path extracted by the planner.The algorithm
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Fig. 3: Time comparison of CA with MPCNN.

Fig. 4: Path planned by CA in the presence of a local minima

was tested in a challenging maze as shown in Fig. 2, in which

it successfully provides an optimal solution.

A. Performance Comparison

Cellular automata based proposed method was tested

against a recently proposed Modified Pulse Coupled Neural

Network (MPCNN). MPCNN has been shown to be a robust

method and determines optimal path. Fig. 3 shows a com-

parison between CA and MPCNN on basis of computation

time where time axes for both algorithms are shown separately

(right axis for CA while left for MPCNN). Hundred random

cases were tested, Fig. 3 clearly demonstrates that CA out-

performs MPCNN while path determined by CA was same as

that of MPCNN. Statistically average time taken by CA was

8.19ms whereas that of MPCNN was 749.94ms.

B. Local Minima Evasion

In order to verify the completeness of our algorithm, the

algorithm was tested to plan a path in the presence of a local

minima. Fig. 4 shows the resultant path in the presence of a

local minima. It is clearly evident that proposed method evades

a local minima efficiently.

C. Static environment

Real world robots often makes use of a SLAM based

mapping of the environments. Algorithm was tested in real

world SLAM environments as shown in Fig. 5.

Fig. 5: Path planned by CA in 2D SLAM environment.

D. Dynamic environment

To ensure that the proposed scheme works in real time, it

is mandatory for the algorithm to work in the presence of

dynamic obstacles. To ascertain this we simulated the real

world scenarios on PlayerStage[23] simulator. Fig. 6 to Fig.

8 presents results for dynamic obstacle avoidance where top

row represents the path covered by each robot from its starting

location to current time step. In these figures there are up to

a maximum of four robots, dynamic obstacle ‘A’ is shown

with a blue trajectory, ‘B’ is shown with green trajectory

while obstacle ‘C’ with a yellow trajectory while intelligent

path planner robot ‘R’is shown with a red trajectory. Here ‘T’

represents the target cell for the robot.

Fig. 6 represents a test scenario where robot ‘R’ has to

intelligently traverse through a L shaped hallway to reach its

destination. Initially robot plans a path and starts navigation as

shown in Fig. 6(a), while it is about to have a head on collision

with obstacle ‘A’. Fig. 6(b) shows that it successfully avoids

dynamic obstacle by rerouting its path. Here planner presents a

solution that makes ‘R’ to traverse in-front of obstacle ‘B’ but

this decision is changed in the next time step. While traversing

towards goal, ‘R’ is intercepted by obstacle ‘B’ and in this case

planner finds its optimal path by adopting a path to the right

of obstacle as shown in Fig. 6(c). Fig. 6(d and e) shows that

it successfully evades obstacle ‘B’.

Fig. 7 (a) shows a case where a robot has to reach a goal

location avoiding three closely moving dynamic obstacles in

a narrow hallway. Fig. 7 (b) presents a how CA based path

planner avoids obstacle ‘A’. After avoiding obstacle ‘A’, robot

‘R’ is encountered by obstacle ‘B’ which is about to have a

head on collision with robot ‘R’ as shown in Fig. 7(c). It is

successfully avoided by moving to right as shown in Fig. 7(d)

whereas on the other hand it is immoderately encountered by

obstacle ‘C’ which it avoids as shown in Fig. 7(e).

Another real world scenario is where the target is non static.

Fig. 8 shows a case in which target is moving in a sinusoidal

manner. Fig. 8 (a and b) shows how initially pursuer ‘R’ tries

to catch target robot ‘T’. As long as target is moving towards

right pursuer also traverses to right as shown as Fig. 8(c and

d). As soon as target changes direction robot changes it too
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Fig. 6: Dynamic environment with two moving obstacles.
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Fig. 7: Dynamic environment with three dynamic obstacles.
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Fig. 8: Pursuer robot with a target moving in a sinusoidal manner .
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and ultimately catches it as shown in Fig. 8(e).

VI. CONCLUSION

The paper presents a cellular automata based real time path

planner that always results in an optimal path. Cellular au-

tomata is coupled with a parent-child relationship for each cell

to achieve improved and real time performance. PlayerStage

simulations are conducted to validate the real time behavior

of the proposed scheme. The results prove that it outperforms

previous path planning algorithms in the light of optimality

and time efficiency as shown in comparison with MPCNN.
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