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Abstract— Planning flight trajectories is important for prac-
tical application of flying systems. This topic has been well
studied for fixed and rotary winged aerial vehicles, but far fewer
works have explored it for flapping systems. Bat Bot (B2) is a
bio-inspired flying robot that mimics bat flight, and it possesses
the ability to follow a designed trajectory with its on-board
electronics and sensing. However, B2’s periodic flapping and
its complex aerodynamics present major challenges in modeling
and planning feasible flight paths. In this paper, we present a
generalized approach that uses a model with direct collocation
methods to plan dynamically feasible flight maneuvers. The
model is made to be both accurate through collection of load
cell force data for parameter selection and computationally
inexpensive such that it can be used efficiently in a nonlinear
solver. We compute the trajectory of launching B2 to a desired
altitude and a banked turn maneuver, and we validate our
methods with experimental flight results of tracking the launch
trajectory with a PD controller.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have numerous applica-
tions in society from package delivery to quality inspection
of construction sites. These tasks require safe and accurate
trajectory planning in order to operate in settings shared by
humans. While UAVs are effective, their rotors are dangerous
to humans in shared environments. Biologically inspired
fliers offer an excellent alternative because they are consid-
ered safe: their flapping wings are not dangerous to people.
Attributes of biological fliers such as agility and efficiency
have motivated research in flapping-wing systems [1], and
numerous works have begun to develop bio-inspired flapping
fliers [2]–[6]. Bats in particular possess these qualities, and
recent works have developed and improved Bat Bot (B2)
[6]–[8], a bio-inspired flapping wing robot that mimics bat
flight. These advances in flapping flight have increased the
interests in planning for these systems.

However, while there is a strong body of literature in plan-
ning flight for quadcopters and fixed-wing UAVs, there have
been fewer works for flapping wing systems. Researchers
have planned dive maneuvers in which the wings were held
constant during the maneuver [9], [10]. Only a few works
in flapping flight have generated feasible trajectories for the
flapping system to follow [11], [12]. Additionally, B2 is a
unique platform that is larger than most flapping-wing micro
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Fig. 1: B2 on load cell sensor experimental setup.

aerial vehicles (FWMAV) but smaller than most ornithopters
with a flexible membrane and morphing wings. This type of
system has not yet been considered for trajectory planning.

In this paper, we address the challenge of creating a strat-
egy for planning autonomous flight for B2 that generalizes to
multiple types of maneuvers. The contribution of this work
is twofold. First, we have developed a hybrid first principles
and data-driven model that captures the dynamics of B2
and is computationally tractable such that it can be used
for trajectory planning. This approach utilizes load cell data
to select model parameters to improve modeling accuracy.
Second, we generate dynamically-feasible flight paths for the
robot using this model with direct collocation methods. We
have tested our approach by conducting closed-loop flight
tests on our experimental platform B2 using its on-board
computing and sensing for a launch maneuver. B2 tracks a
generated trajectory of launch from rest to a desired altitude
with a proportional-derivative (PD) controller. We have also
extended the model to three dimensions and planned a
banked turn in simulation. Our research helps fill the gap
of trajectory planning in the literature as well as present a
general methodology for modeling and planning with B2.

The contents of this paper are ordered as follows. Sec-
tion II provides a thorough description of the dynamic model
of B2. The proposed trajectory optimization routine and its
simulation results are given in Section III. We present the
experimental flight tests in Section IV. Comments and future
work are discussed in Section V.

II. MODELING

Modeling flapping flight is a very challenging problem
due to the unsteady time-varying aerodynamic forces pro-
duced by the wings. B2 is an especially complex system
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because of the thin, flexible membrane that deforms over
a wingbeat cycle. Given these complexities, we propose a
hybrid first-principles and data-driven model for representing
B2 that is both computationally tractable for a trajectory
planning routine and accurate in predicting B2’s behavior.
This simplified longitudinal model displayed in Figure 2
is similar to [7], with the following changes: the massless
wing assumption is relaxed, wing pronation is added to
model passive wing twisting, and the aerodynamic force
coefficients are modified. While most works in flapping flight
assume massless wings, B2’s wings have non-negligible
mass, with each weighing approximately 7 g out of a total of
approximately 100 g. We consider the multi-body system of
four rigid links: three flat plates for the right and left wings
and hindlimbs, and one link for the body. We supplement the
model by estimating model parameters from load cell force
data to improve model accuracy.

A. Lagrangian modeling

The flapping angle between the body xy plane and each
wing is denoted qFL, and it is actuated by the torque uFL.
When the wings flap, they passively pronate, i.e. rotate about
the spanwise axis, because they are attached to the shoulders
at the front of the wing. This is responsible for the forward
thrust generation of the robot. We model this with the angle
qPS that is actuated by the torque uPS such that it maintains
a periodic trajectory. The tail is approximated also as a
flat plate that pitches up and down, and this pitching angle
relative to the body is measured as qDV. These joints are
assumed to have no damping or stiffness. The wings each
have mass mw = 7 g and the tail has mass mt = 2 g,
and they are included in the Lagrangian formulation. The
underactuated coordinates are the pitch qy and the body
center of mass (CoM) position (px, 0, pz). We combine these
configuration variables and inputs as

q =
[
qy px pz qFL qPS qDV

]>
u =

[
uFL uPS uDV

]>
.

(1)

We use the Euler-Lagrange convention to derive

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu + Γ(q, q̇), (2)

the equations of motion. Vector Γ(q, q̇) is the aerodynamic
forces mapped to the configuration space. It will be defined in
the following section. Matrix B =

[
03×3 I3×3

]>
maps the

inputs to directly actuate these Degrees of Freedom (DoF).

B. Aerodynamics

Figure 2 shows the aerodynamic forces acting on the right
wing (Fr), left wing (Fl), and tail (Ft). These are written
with respect to the inertial frame. When B2 flaps its wings,
the wingtip travels much faster than points close to the
shoulder joint. Therefore, we integrate the chordwise strips
of the lift ‖dFL,l‖ and drag ‖dFD,l‖ aerodynamic forces

Fig. 2: Simplified 2D model of B2 dynamics and aerody-
namics.

over the wingspan ws = 0.22 m of the left wing as

‖FL,l‖ =

∫ ws

0

‖dFL,l‖ =
4

3
·1
2
CL(αl)ρ ‖vqc,l‖2 wcws

‖FD,l‖ =

∫ ws

0

‖dFD,l‖ =
4

3
·1
2
CD(αl)ρ ‖vqc,l‖2 wcws

(3)
where ρ = 1.1839 kg/m3 is the density of air, wc = 0.24 m
is the wing chord length, and vqc,l is the velocity located
at a quarter chord behind the leading edge and mid span
of the left wing. The lift and drag coefficients CL(αl) and
CD(αl) are functions of only the angle of attack αl of the
left wing. The angle of attack is αl = atan2 (vqc,l,z, vqc,l,x),
where vqc,l,x and vqc,l,z are the x and z components of
the velocity in the left wing frame. The 4

3 factor results
from the integration and accounts for the higher velocity of
the wing tip. This factor has been used for other models
of bat flight with rectangular plates [13]. The forces on
the right wing are calculated equivalently. The tail force
Ft is not integrated because there is no flapping motion.
Researchers have relied on quasi-steady aerodynamic models
for FWMAVs and ornithopters because of their simplicity
and accuracy [2], [7], [14], [15]. These works follow the
structure of Dickinson’s quasi-steady model: the lift CL and
drag CD coefficients are simple algebraic expressions of only
angle of attack α. We select this model for our lift and
drag coefficients because of its simple representation and its
effectiveness in previous works.

The aerodynamic forces are written with respect to the
workspace. We use the principle of virtual work to transform
these workspace forces into configuration space:

Γ(q, q̇) =
∂pqc,r

∂q

>
Fr +

∂pqc,l

∂q

>
Fl +

∂pqc,t

∂q

>
Ft. (4)

From thin airfoil theory, we assume that the forces act at the
points one quarter chord length behind the leading edge of
the right wing pqc,r, left wing pqc,l, and tail pqc,t. Vector
Γ(q, q̇) represents the generalized aerodynamic forces and
torques on the configuration variables.

C. Parameter tuning

The amplitude of the pronation angle is a challenging pa-
rameter to estimate because the pronating motion is a passive
one in B2. It occurs because the forelimb is connected at
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Fig. 3: Comparison of average net x-force (thrust generation)
of physical experiments on a load cell (red) and those
simulated with the proposed aerodynamic model (blue).

the front of the wing, and the wing is flexible. In order to
estimate an appropriate amplitude for this angle, we recorded
force data with an analog six-axis JR3 force-torque sensor
(model #30E12A4). This sensor has a resolution of 0.005 N.
Figure 1 shows B2 secured to the sensor. A fixed voltage of
8.4 V powered a speed controller and brushless DC (BLDC)
motor driving the flapping motion. The load cell signals were
recorded with a dSPACE CLP1104 I/O box and were saved
onto a computer with a DS1104 R&D Controller Board. The
sampling rate was 1000 Hz.

We recorded data at various flapping frequencies with no
wind speed. The raw data consisted of the net force in the x
direction (forward in the inertial frame). The recorded data
were post-processed by subtracting the nominal force read-
ings (no flapping) to remove the force of gravity and sensor
biases, and they were filtered with a 6th−order Butterworth
low-pass filter with a cutoff frequency of 50 Hz to remove
high frequency noise.

The processed data were collected and displayed in Fig-
ure 3 to show the average net x-force recorded at different
flapping frequencies. It can be observed that the pronating
motion of the wings causes an average positive force in the x-
direction, and it is responsible for the thrust that B2 produces.
Furthermore, it is a function of the flapping frequency, as the
thrust increases with higher frequencies. Using this data, we
estimated the pronation angle amplitude such that our model
very accurately approximates the thrust generation of B2,
and it can be seen in Figure 3 that this is accurate for the
full range of flapping frequencies.

III. TRAJECTORY OPTIMIZATION

Trajectory optimization is a method that finds a state
trajectory x(t) and control input trajectory u(t) that satisfy
the system dynamics and minimize an objective function.
This problem can be solved with either direct or indirect
methods. Direct methods first discretize the states and inputs
and solve the nonlinear programming problem, while indirect
methods first attempt to satisfy the optimal control necessary
conditions, and then discretize the solution. In this paper,
we use direct collocation because the region of convergence
often is smaller for indirect methods, indirect methods re-
quire explicitly deriving the necessary conditions which are

difficult for this problem [16], and direct collocation has had
wide success in underactuated robots [17], [18].

Direct collocation discretizes the optimal control problem
at N knot points to generate a finite dimensional nonlinear
programming problem [19]. We select the Hermite-Simpson
discretization scheme in which the state trajectories are
represented as piecewise cubic Hermite splines and the input
trajectories are piecewise linear splines. This discretization
offers a higher level of accuracy than lower order methods
such as trapezoidal for the same number of knot points,
though the computation time is increased.

The system dynamics ẋ = f(x,u) are enforced at the
midpoints between the knots, where x =

[
q q̇

]>
. The state

at the midpoint between two knots is interpolated as

x̄k+ 1
2

= 1
2 (xk + xk+1) + hk

8 (fk − fk+1) (5)

where xk = x(tk) and fk = f(tk,xk,uk). The term hk =
(tk+1−tk) is the time difference between knot points k and
k+1. The control input at this midpoint is linearly inter-
polated as ūk+ 1

2
= (uk+1+uk)/2. We calculate the state

derivative at the midpoint as fk+ 1
2

= f(tk+ 1
2
, x̄k+ 1

2
, ūk+ 1

2
).

The state derivative at the midpoint is interpolated as

ẋk+ 1
2

= − 3
2hk

(xk − xk+1)− 1
4 (fk + fk+1). (6)

We compare the difference between these two computations
by evaluating the defect vector

ζk = fk+ 1
2
− ẋk+ 1

2
, (7)

i.e. the error between the actual dynamics and the polyno-
mial approximation between the knot points. The equations
ζk = 0 for all k ∈ {0, 1, . . . , N−2} form the set of
equality constraints that enforce the polynomials to conform
to the system dynamics. When this defect vector is close to
zero, the cubic polynomials are accurately representing the
system dynamics. The optimization is now a sparse finite-
dimensional nonlinear programming problem that can be
solved efficiently.

A. Partial feedback linearization

B2 flaps its wings continuously during a flight, and thus
we can impose constraints on the dynamics such that qFL and
qPS track periodic trajectories. We can use partial feedback
linearization in order to enforce these conditions. We solve
for q̈ in (2), and we separate the equations into the actuated
(qFL, qPS, qDV) and unactuated (qy , px, pz) coordinates as

q̈a = fa(q, q̇) + ga(q)u

q̈u = fu(q, q̇) + gu(q)u.
(8)

Because this system is affine in control, we can simplify
this expression by redefining the input terms uFL, uPS

and uDV. The control action u = g−1a (q) (ν − fa(q, q̇))
simplifies the actuated dynamics to q̈a = ν. The new control
term ν =

[
νFL νPS νDV

]>
allows direct shaping of the

actuated coordinates. We force the flapping angle to follow
a sinusoidal flapping trajectory qrFL(t) = aFL sin(ωFLt +
bFL)+cFL to effect periodic flapping of the model. Similarly,
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Fig. 4: Body CoM position (px, 0, pz) and tail angle qDV trajectories computed by optimization for a launch maneuver.

the pronation angle must follow the reference qrPS(t) =
aPS sin(ωFLt+ bPS) + cPS to mimic the passive pronations
of each wingbeat. Note that the frequency ωFL for pronation
is the same as that of flapping, as pronation is coupled to the
flapping motion. Sinusoidal functions have been used in past
work for the flapping and pronation angles [20]. We have run
B2 simulations with the feedback linearization policy and a
PD controller for qDV and have shown stable flight.

An advantage of this approach is that the states qFL,
qPS, q̇FL, q̇PS and the corresponding inputs uFL and uPS

can be removed from the decision variables from the op-
timization routine defined in the following section because
we can assume perfect tracking of the states to their de-
sired references. Therefore, we do not require enforcing
the dynamic constraints for these variables, and thus the
problem has fewer decision variables and constraints. These
simplifications reduce the configuration variable vector to
q =

[
qy px pz qDV

]>
and the control to ν = νDV.

B. Launch trajectory to a specified altitude

One important maneuver to plan for B2 is launching from
rest to reach a desired altitude. This entails selection of a
feasible launch angle and the control input of the hindlimbs
during this period. In formulating this as a trajectory op-
timization problem, we utilize the longitudinal model from
Section II. We formulate the trajectory optimization problem
such that B2 is launched from a given initial launch velocity
v0 =

√
ṗ2z0 + ṗ2x0

= 9 m/s at initial position (px0
, 0, pz0) =

(0, 0, 0) to reach a desired final altitude pdzf . The final vertical
velocity ṗzf should be close to 0 for stable flight, though not
strictly 0 because of the periodic oscillation from flapping.
Given these requirements, we write the constrained nonlinear
programming problem as

minimize
x,νDV,tf

J (νDV) =

N−2∑
k=0

hk
2

(
νDV(tk+1)

2 + νDV(tk)
2)

subject to f1 : xi ≤ xi(tk) ≤ xi, k = 0, . . . , N−1, xi ∈ x

f2 : νDV ≤ νDV(tk) ≤ νDV, k = 0, . . . , N−1
f3 : 0 ≤ tf ≤ tmax

f4 : |xi(tf )− xdi (tf )| ≤ εi, xi ∈ x

g1 : ζk = fk+ 1
2
− ẋk+ 1

2
= 0, k = 0, . . . , N−2

g2 : px0 , pz0 , q̇y0 , qDV0 , q̇DV0 = 0

ṗx0 = v0 cos qy0 , ṗz0 = v0 sin qy0 .
(9)

The cost function J is the trapezoidal numerical integration
of the control input νDV. Hence, we are minimizing the

acceleration of qDV to find the trajectory with the least
control effort spent moving the hindlimbs. Consequently, it
should ignore the fast dynamics induced by flapping and
respond only to correct the slower average body dynamics.

The inequality constraints f1, f2, and f3 are bounds on the
configuration variables, their derivatives, the control input,
and the time length of the trajectory. We select these based
on actuator limits of the tail and so that the launch is forward
and upwards (positive px and pz). Inequality constraints f4
enforce the desired final conditions while allowing slackness
to the optimizer as specified by small constants εi for
xi ∈ x. The equality constraints of g1 are the collocation
constraints to enforce the dynamics of the system from (7).
The initial conditions of the flight are set by constraints
g2. The launching angle is constrained to be equal to the
optimizer’s choice of the initial pitch angle of B2. When
launching B2, there should be no initial angle of attack of
the body, i.e. the direction of launch should be aligned with
the pitch orientation.

The proposed optimization problem was solved using
MATLAB’s constrained optimization algorithm fmincon with
an interior-point algorithm. The initial guess was generated
by selecting approximate initial and final states and linearly
interpolating between them to form the state trajectories. The
initial guess for the input is set to zero. We found that it
wasn’t necessary to simulate the dynamics to acquire the
periodic behavior of the states in generating the initial guess
because the optimization converges without issues using the
linearly interpolated guess.

C. Results

The simulation results of solving the trajectory optimiza-
tion problem are shown in Figure 4 and Figure 6. As
expected, the pitch angle is periodic because of the large
aerodynamic and inertial forces generated from the flapping
of B2’s wings. This is less pronounced in the z position,
but the small oscillations are still present. The hindlimb
angle begins at 0 and is gradually tilted up over the course
of the trajectory. This final nonzero tail angle is necessary
for B2 to reach its final pitch angle and maintain straight
flight. The gradual movement is a result of the objective
function penalizing large control efforts over the trajectory.
The importance of these results is found primarily in the
optimizer’s selection of the initial launch angle of qy0

= 20◦

and the control inputs shaping of the tail qDV trajectory. A
large launch angle will cause B2 to reach a larger altitude
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but fail to maintain this, and too small of an angle will result
in a slow climb to the desired altitude.

D. Banked turn simulation

Banked turning is a crucial maneuver in aerial vehicles
because they require this to avoid obstacles and reach des-
tinations. Its role is also significant in biological bat flight
[21], and consequently we seek to perform banked turns with
B2. We can extend the longitudinal model of B2 to 3D by
adding the underactuated DoFs for the roll angle qx, the yaw
angle qz , and the y position py . We also add the actuated
DoFs of the right and left folding positions qFO,r and qFO,l

and the tail rotation qRO. The folding-unfolding DoFs qFO,r

and qFO,l are the lengths of each wing. As the right wing is
retracted, the length qFO,r is reduced, decreasing the effective
wing area. The tail rotation angle represents the asymmetric
movement of the hindlimbs. One leg moving up and the other
moving down can be modeled as a rotation of the tail plate
about its chordwise direction. These two DoFs approximate
the movement of both legs.

These additional DoFs combined with the longer required
flight time of banked turning greatly increases computation
time. We can improve the speed of the optimization by
providing analytical constraint Jacobian information to the
optimizer. The aerodynamic model is an analytical expres-
sion, so finding the Jacobian of this symbolically is possible.
However, computing this for the full dynamics is difficult
because it requires taking the Jacobian of the system dy-
namics in the form of ẋ = f(x,u). Currently, f(x,u) is
computed numerically because it requires the inversion of
the inertial matrix D(q). Symbolic inversion of this 12× 12
matrix becomes very large, so we draw upon other works
in trajectory optimization of quadrupeds in which the defect
variables, i.e. the configuration variable accelerations q̈, are
added as decision variables [18]. The dynamics can then be
enforced implicitly as in (2), avoiding the matrix inversion.
We utilize chain rule to compute the Jacobians, specifically
for the aerodynamic forces. Additionally, we use IPOPT [22]
and supply the sparsity structure of the constraint Jacobian.

Given these speed improvements, we can plan a banked
turn maneuver in which B2 must change its yaw by 90◦ by
banking at a nonzero roll angle. As a beginning step, we will
solve the feasibility problem by setting the cost J = 0. We
select the initial roll angle to be qx0

= 20◦ in order to initiate
the banked turn. We restrict the final yaw position to be qz0 =
90◦ so that B2 completes a turn. We use 141 collocation
points in the optimization. The optimized trajectory is plotted
in Figure 5. The optimizer selects the initial launch angle of
5◦ and a time duration of 2 s such that B2 banks to the right
and completes a full 90◦ turn.

IV. EXPERIMENTS

We performed a series of flight tests using only B2’s
on-board sensors to demonstrate tracking of the optimized
launch trajectory (Figure 6). B2 was equipped with a
brushless DC (BLDC) motor that drives flapping and two
servo motors that independently articulate the angles of the
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Fig. 5: Body CoM position (px, py, pz) trajectory (blue)
computed by the optimization for a banked turn maneuver.
Its projection onto the xy plane (gray) is also shown.

two hindlimbs. A thin silicon membrane was secured to
the wings, body, and hindlimbs. B2’s on-board computer
(STM32f429II, 180 MHz 32-bit Arm CPU) received sensor
data from a VN-100 (VectorNav) inertial measurement unit
(IMU) and computed control commands to the servo motors
actuating the hindlimbs in order to follow the optimized
trajectory. The attached video demonstrates a flight result
of B2 tracking the optimized trajectory.

The VN-100 is a 10-axis IMU (3-axis accelerometer, 3-
axis gyroscope, 3-axis magnetometer, barometer). This sen-
sor reports roll, pitch, and yaw by fusing the accelerometer,
gyroscope, and magnetometer data with an Extended Kalman
Filter. The pitch angle can be used directly as an estimate
for qy . We can estimate altitude by using atmospheric
pressure measurements from the barometer with hb =

44330
(

1− (p/p0)
0.1903

)
, where p0 = 1013.25 mbar is the

pressure at sea level and p is the current pressure reading
from the sensor. We run this a sampling rate of 100 Hz and
use a moving average filter to smooth the altitude estimate.
These state estimates from the sensor were provided to the
controller to compute errors between the actual and desired
trajectories. We programmed a PD controller with inputs
of pitch qy and altitude measurements pz . The optimized
reference trajectories were programmed in the computer such
that B2 can track these trajectories.

We performed the experimental flight tests in the Intelli-
gent Robotics Laboratory (IRL) flight arena at the University
of Illinois at Champaign-Urbana. B2 was launched by hand
at approximately 9 m/s at the initial pitch angle selected by
the optimizer. Throttle was set to maximum to produce a
flapping frequency of roughly 10 Hz. At the end of the test,
the throttle was shut off to prevent damage to the robot. Upon
launch, the controller and time-parameterized trajectories are
triggered by sensing the spike in x-acceleration via the IMU.

Four flight tests were recorded, and their respective pitch
and altitude measurements and clips of a flight video are
presented in Figure 6. B2 is able to track both the pitch
angle and the desired altitude using measurements from its
on-board sensors and controlling the hindlimb servo motors.
These results demonstrate the effectiveness of the simplified
model at predicting B2’s complex flight behavior. It should
be noted that there are small errors in the initial condition as
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Fig. 6: Pitch angle and altitude tracking of four recorded
closed-loop flight tests. The blue line is the optimized tra-
jectory from simulation, the red shading shows the minimum
and maximum values of the experimental flight tests, and the
red line is the mean of the tests. The frames from the attached
flight video are shown.

seen in the initial pitch angle from Figure 6 because B2 was
launched by hand. Additionally, the average position of qFL
has a slightly positive bias (cFL > 0) because of the effects
of air pushing upwards on the wings to generate lift. These
explain some of the variance of the altitude measurements,
most notably at 0.5 s. There is no initial condition error for
altitude because the altitude is zeroed by its initial reading.
In future testing, we will develop a launching mechanism for
tighter control of the initial launch conditions.

V. CONCLUSION

In this paper, we have formulated a methodology for
planning flight maneuvers of the bio-inspired robotic bat B2.
We created a simplified model that is both tractable for com-
putation in nonlinear optimization and accurate from use of
experimental load cell data. We then used this model to solve
the trajectory optimization problem with direct collocation
for a launch maneuver and a banked turn maneuver. The
experimental flight tests validate the proposed framework.
In future work, we can supplement load cell data with free
flight experiments and create a more rigorous parameter
estimation routine. We can also experiment more with the
objective function and answer some interesting questions

relating to minimum turn curvature, the effects of initial
launch conditions, and the role of wing folding.
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