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Abstract

In this paper, we provide a unified analysis of temporal difference learning al-
gorithms with linear function approximators by exploiting their connections to
Markov jump linear systems (MJLS). We tailor the MJLS theory developed in the
control community to characterize the exact behaviors of the first and second order
moments of a large family of temporal difference learning algorithms. For both
the IID and Markov noise cases, we show that the evolution of some augmented
versions of the mean and covariance matrix of the TD estimation error exactly fol-
lows the trajectory of a deterministic linear time-invariant (LTI) dynamical system.
Applying the well-known LTI system theory, we obtain closed-form expressions
for the mean and covariance matrix of the TD estimation error at any time step. We
provide a tight matrix spectral radius condition to guarantee the convergence of the
covariance matrix of the TD estimation error, and perform a perturbation analysis
to characterize the dependence of the TD behaviors on learning rate. For the IID
case, we provide an exact formula characterizing how the mean and covariance
matrix of the TD estimation error converge to the steady state values at a linear
rate. For the Markov case, we use our formulas to explain how the behaviors of TD
learning algorithms are affected by learning rate and the underlying Markov chain.
For both cases, upper and lower bounds for the mean square TD error are derived.
An exact formula for the steady state mean square TD error is also provided.

1 Introduction

Reinforcement learning (RL) has shown great promise in solving sequential decision making tasks
[5, 48]. One important topic for RL is policy evaluation whose objective is to evaluate the value
function of a given policy. A large family of temporal difference (TD) learning methods including
standard TD, GTD, TDC, GTD2, DTD, and ATD [47, 50, 49, 38] have been developed to solve the
policy evaluation problem. These TD learning algorithms have become important building blocks
for RL algorithms. See [17] for a comprehensive survey. Despite the popularity of TD learning,
the behaviors of these algorithms have not been fully understood from a theoretical viewpoint. The
standard ODE technique [51, 9, 7, 36, 8] can only be used to prove asymptotic convergence. Finite
sample bounds are challenging to obtain and typically developed in a case-by-case manner. Recently,
there have been intensive research activities focusing on establishing finite sample bounds for TD
learning methods with linear function approximations under various assumptions. The IID noise
case is covered in [16, 37, 41]. In [6], the analysis is extended for a Markov noise model but an
extra projection step in the algorithm is required. Very recently, finite sample bounds for the TD
method (without the projection step) under the Markov assumption have been obtained in [45].
The bounds in [45] actually work for any TD learning algorithm that can be modeled by a linear
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stochastic approximation scheme. It remains unclear how tight these bounds are (especially for the
large learning rate region). To complement the existing analysis results and techniques, we propose
a general unified analysis framework for TD learning algorithms by borrowing the Markov jump
linear system (MJLS) theory [14] from the controls literature. Our approach is inspired by a recent
research trend in applying control theory for analysis of optimization algorithms [39, 30, 31, 29, 21,
52, 15, 46, 28, 32, 22, 3, 40, 26, 4, 18, 43], and extends the jump system perspective for finite sum
optimization methods in [31] to TD learning.

Our key insight is that TD learning algorithms with linear function approximations are essentially
just Markov jump linear systems. Notice that a MJLS is described by a linear state space model
whose state/input matrices are functions of a jump parameter sampled from a finite state Markov
chain. Since the behaviors of MJLS have been well established in the controls field [14, 23, 1, 12, 13,
33, 34, 19, 20, 44], we can borrow the analysis tools there to analyze TD learning algorithms in a
more unified manner. Our main contributions are summarized as follows.

1. We present a unified Markov jump linear system perspective on a large family of TD learning
algorithms including TD, TDC, GTD, GTD2, ATD, and DTD. Specifically, we make the
key observation that these methods are just MJLS subject to some prescribed input.

2. By tailoring the existing MJLS theory, we show that the evolution of some augmented
versions of the mean and covariance matrix of the estimation error in all above TD learn-
ing methods exactly follows the trajectory of a deterministic linear time-invariant (LTI)
dynamical system for both the IID and Markov noise cases. As a result, we obtain unified
closed-form formulas for the mean and covariance matrix of the TD estimation error at any
time step.

3. We provide a tight matrix spectral radius condition to guarantee the convergence of the
covariance matrix of the TD estimation error under the general Markov assumption. By
using the matrix perturbation theory [42, 35, 2, 24], we perform a perturbation analysis to
show the dependence of the behaviors of TD learning on learning rate in a more transparent
manner. For the IID case, we provide an exact formula characterizing how the mean and
covariance matrix of the TD estimation error converge to the steady state values at a linear
rate. For the Markov case, we use our formulas to explain how the behaviors of TD learning
algorithms are affected by learning rate and the underlying Markov chain. For both cases,
we have shown that the mean square error of TD learning converges linearly to a limit whose
exact formula is also provided. In addition, upper and lower bounds for the mean square
error of TD learning are simultaneously obtained.

We view our proposed analysis as a complement rather than a replacement for existing analysis
techniques. The existing analysis focuses on upper bounds for the TD estimation error. Our closed-
form formulas provide both upper and lower bounds for the mean square error of TD learning. Our
analysis also characterizes the exact limit of the steady state TD error and related convergence rates.

2 Background

2.1 Notation

The set of m-dimensional real vectors is denoted as Rm. The Kronecker product of two matrices A
and B is denoted by A⊗B. Notice (A⊗B)T = AT ⊗BT and (A⊗B)(C ⊗D) = (AC)⊗ (BD)
when the matrices have compatible dimensions. Let vec denote the standard vectorization operation
that stacks the columns of a matrix into a vector. We have vec(AXB) = (BT⊗A) vec(X). Let sym

denote the symmetrization operation, i.e. sym(A) = AT+A
2 . Let diag(Hi) denote a matrix whose

(i, i)-th block is Hi and all other blocks are zero. Specifically, given Hi for i = 1, . . . , n, we have

diag(Hi) =

H1 . . . 0
...

. . .
...

0 . . . Hn

 .
A square matrix is Schur stable if all its eigenvalues have magnitude strictly less than 1. A square
matrix is Hurwitz if all its eigenvalues have strictly negative real parts. The spectral radius of a matrix
H is denoted as σ(H). The eigenvalue with the largest magnitude of H is denoted as λmax(H) and
the eigenvalue with the largest real part of H is denoted as λmax real(H).
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2.2 Linear time-invariant systems

A linear time-invariant (LTI) system is typically governed by the following state-space model
xk+1 = Hxk + Guk, (1)

where xk ∈ Rnx , uk ∈ Rnu ,H ∈ Rnx×nx , and G ∈ Rnx×nu . The LTI system theory has been well
documented in standard control textbooks [27, 10]. Here we briefly review several useful results.

• Closed-form formulas for xk: Given an initial condition x0 and an input sequence {uk},
the sequence {xk} can be determined using the following closed-form expression

xk = (H)kx0 +

k−1∑
t=0

(H)k−1−tGut, (2)

where (H)k stands for the k-th power of the matrixH.
• Necessary and sufficient stability condition: When H is Schur stable, we know

(H)kx0 → 0 for any arbitrary x0. When σ(H) ≥ 1, there always exists x0 such that (H)kx0

does not converge to 0. When σ(H) > 1, there even exists x0 such that (H)kx0 →∞. See
Section 7.2 in [27] for a detailed discussion. A well-known result in the controls literature is
that the LTI system (1) is stable if and only ifH is Schur stable.

• Exact limit for xk: If H is Schur stable and uk converges to a limit u∞, then xk will
converge to an exact limit. This is formalized as follows.
Proposition 1. Consider the LTI system (1). If σ(H) < 1 and limk→∞ uk = u∞, then
limk→∞ xk exists and we have x∞ = limk→∞ xk = (I −H)−1Gu∞.

• Response for constant input: If uk = u ∀k and σ(H) < 1, then the closed-form expression
for xk can be further simplified to give the following tight convergence rate result.
Proposition 2. Suppose σ(H) < 1, and xk is determined by (1). If uk = u ∀k, then xk

converges to a limit point x∞ = limk→∞ xk = (I −H)−1Gu. And we can compute xk as

xk = x∞ + (H)k(x0 − x∞). (3)

In addition, ‖xk − x∞‖ ≤ C0(σ(H) + ε)k for some C0 and any arbitrarily small ε > 0.

From the above proposition, we can clearly see that now xk is a sum of a constant steady
state term x∞ and a matrix power term that decays at a linear rate specified by σ(H)
(see Section 2.2 in [39] for more explanations). The convergence rate characterized by
(σ(H) + ε) is tight. More discussions on the tightness of this convergence rate are provided
in the supplementary material.

• Response for exponentially shrinking input: When uk itself converges at a linear rate
ρ̃ and H is Schur stable, xk will converge to its limit point at a linear rate specified by
max{σ(H) + ε, ρ̃}. A formal statement is provided as follows.
Proposition 3. Suppose σ(H) < 1, and xk is determined by (1). If uk converges to
u∞ as ‖uk − u∞‖ ≤ Cρ̃k, then we have x∞ = limk→∞ xk = (I − H)−1Gu∞ and
‖xk − x∞‖ ≤ C0 (max{σ(H) + ε, ρ̃})k for some C0 and any arbitrarily small ε > 0.

The results in Propositions 1, 2, and 3 are well known in the control community. For completeness,
we will include their proofs in the supplementary material.

2.3 Markov jump linear systems

Another important class of dynamic systems that have been extensively studied in the controls
literature is the so-called Markov jump linear system (MJLS) [14]. Let {zk} be a Markov chain
sampled from a finite state space S. A MJLS is governed by the following state-space model:

ξk+1 = H(zk)ξk +G(zk)yk, (4)

where H(zk) and G(zk) are matrix functions of zk. Here, ξk is the state, and yk is the input. There
is a one-to-one mapping from S to the setN := {1, 2, . . . , n} where n = |S|. We can assume H(zk)
is sampled from a set of matrices {H1, H2, . . . ,Hn} and G(zk) is sampled from {G1, G2, . . . , Gn}.
We have H(zk) = Hi and G(zk) = Gi when zk = i. The MJLS theory has been well developed in
the controls community [14]. We will apply the MJLS theory to analyze TD learning algorithms.
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3 A general Markov jump system perspective for TD learning

In this section, we provide a general jump system perspective for TD learning with linear function
approximations. Notice that many TD learning algorithms including TD, TDC, GTD, GTD2, A-TD,
and D-TD can be modeled by the following linear stochastic recursion:

ξk+1 = ξk + α
(
A(zk)ξk + b(zk)

)
, (5)

where {zk} forms a finite state Markov chain and b(zk) satisfies limk→∞ Eb(zk) = 0.1 We have
A(zk) = Ai and b(zk) = bi when zk = i. For simplicity, we mainly focus on analyzing (5). Other
models including two time-scale schemes [25, 54] will be discussed in the supplementary material.

Our key observation is that (5) can be rewritten as the following MJLS

ξk+1 = (I + αA(zk))ξk + αb(zk). (6)

The above model is a special case of (4) if we set H(zk) = I + αA(zk), G(zk) = αb(zk), and
yk = 1 ∀k. Consequently, many TD learning algorithms can be analyzed using the MJLS theory.

We will borrow the analysis idea from the standard MJLS theory. Our analysis is built upon the fact
that some augmented versions of the mean and the covariance matrix of {ξk} for the MJLS model (4)
actually follow the dynamics of a deterministic LTI model in the form of (1) [14, Chapter 3]. To see
this, we denote the transition probabilities for the Markov chain {zk} as pij := P(zk+1 = j|zk = i)
and specify the transition matrix P by setting its (i, j)-th entry to be pij . Obviously, we have pij ≥ 0
and

∑n
j=1 pij = 1 for all i. Next, the indicator function 1{zk=i} is defined as 1{zk=i} = 1 if zk = i

and 1{zk=i} = 0 otherwise. Now we define the following key quantities:

qki = E
(
ξk1{zk=i}

)
, Qki = E

(
ξk(ξk)T1{zk=i}

)
.

Suppose yk = 1 ∀k. Based on [14, Proposition 3.35], qk and Qk can be iteratively calculated as

qk+1
j =

n∑
i=1

pij(Hiq
k
i +Gip

k
i ), (7)

Qk+1
j =

n∑
i=1

pij
(
HiQ

k
iH

T
i + 2 sym(Hiq

k
i G

T
i ) + pkiGiG

T
i

)
, (8)

where pki := P(zk = i). If we further augment qki and Qki as

qk =

q
k
1
...
qkn

 , Qk =
[
Qk1 Qk2 . . . Qkn

]
,

then it is straightforward to rewrite (7) (8) as the following LTI system[
qk+1

vec(Qk+1)

]
=

[
H11 0
H21 H22

] [
qk

vec(Qk)

]
+

[
ukq
ukQ

]
, (9)

whereH11,H21,H22, ukq , and ukQ are given by

H11 =

p11H1 . . . pn1Hn

...
. . .

...
p1nH1 . . . pnnHn

 ,H22 =

p11H1 ⊗H1 . . . pn1Hn ⊗Hn

...
. . .

...
p1nH1 ⊗H1 . . . pnnHn ⊗Hn

 ,
H21 =

p11(H1 ⊗G1 +G1 ⊗H1) . . . pn1(Hn ⊗Gn +Gn ⊗Hn),
...

. . .
...

p1n(H1 ⊗G1 +G1 ⊗H1) . . . pnn(Hn ⊗Gn +Gn ⊗Hn)

 ,
ukq =

p11G1 . . . pn1Gn
...

. . .
...

p1nG1 . . . pnnGn


p

k
1I
...

pknI

 , ukQ =

p11G1 ⊗G1 . . . pn1Gn ⊗Gn
...

. . .
...

p1nG1 ⊗G1 . . . pnnGn ⊗Gn


p

k
1I
...

pknI

 .
(10)

1This standard assumption is typically related to the projected Bellman equation and can always be enforced
by a shifting argument. More explanations are provided in Remark 1.
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A detailed derivation for the above result is presented in the supplementary material. A key implication
here is that qk and vec(Qk) follow the LTI dynamics (9) and can be analyzed using the standard LTI
theory reviewed in Section 2.2. Obviously, we have Eξk =

∑n
i=1 q

k
i , E

(
ξk(ξk)T

)
=
∑n
i=1Q

k
i , and

E‖ξk‖2 = trace(
∑n
i=1Q

k
i ) = (1T

n ⊗ vec(Inξ)
T) vec(Qk). Hence the mean, covariance, and mean

square norm of ξk can all be calculated using closed-form expressions. We will present a detailed
analysis for (6) and provide related implications for TD learning in the next two sections.

For illustrative purposes, we explain the jump system perspective for the standard TD method.

Example 1: TD method. The standard TD method (or TD(0)) uses the following update rule:

θk+1 = θk − αφ(sk)
(
(φ(sk)− γφ(sk+1))Tθk − r(sk)

)
, (11)

where {sk} is the underlying Markov chain, φ is the feature vector, r is the reward, γ is the discounting
factor, and θk is the weight vector to be estimated. Suppose θ∗ is the vector that solves the projected
Bellman equation. We can set zk =

[
(sk+1)T (sk)T

]T
and then rewrite the TD update as

θk+1 − θ∗ =
(
I + αA(zk)

)
(θk − θ∗) + αb(zk), (12)

where A(zk) = φ(sk)(γφ(sk+1)− φ(sk))T and b(zk) = φ(sk)
(
r(sk) + (φ(sk)− γφ(sk+1))Tθ∗

)
.

Suppose limk→∞ pki = p∞i . Since the projected Bellman equation and the equation
∑n
i=1 p

∞
i bi = 0

are actually equivalent, we have naturally enforced limk→∞ Eb(zk) = 0. Therefore, the TD update
can be modeled as (6) with b(zk) satisfying limk→∞ Eb(zk) = 0. See Section 3.1 in [45] for a
similar formulation. Now we can apply the MJLS theory and the LTI model (9) to analyze the
covariance E

(
(θk − θ∗)(θk − θ∗)T

)
and the mean square error E‖θk − θ∗‖2. In this case, we have

qk =

E
(
(θk − θ∗)1{zk=1}

)
...

E
(
(θk − θ∗)1{zk=n}

)
 , vec(Qk) =

vec
(
E((θk − θ∗)(θk − θ∗)T1{zk=1})

)
...

vec
(
E((θk − θ∗)(θk − θ∗)T1{zk=n})

)
 .

Then we can easily analyze qk and Qk by applying the LTI model (9). In general, the covariance
matrix E

(
(θk − θ∗)(θk − θ∗)T

)
and the mean value E(θk−θ∗) do not directly follow an LTI system.

However, when working with the augmented covariance matrix Qk and the augmented mean value
vector qk, we do obtain an LTI model in the form of (1). Once the closed-form expression for Qk
is obtained, the mean square estimation error for the TD update can be immediately calculated as
E‖θk − θ∗‖2 = trace(

∑n
i=1Q

k
i ) = (1T

n ⊗ vec(Inθ )
T) vec(Qk).

Here we omit the detailed formulations for other TD learning methods. The key message is that {zk}
can be viewed as a jump parameter and TD learning methods are essentially just MJLS. Notice that all
the TD learning algorithms that can be analyzed using the ODE method are in the form of (6). Jump
system perspectives for other TD learning algorithms are discussed in the supplementary material.

Remark 1 (Assumptions). Denote Ā = limk→∞ EA(zk) =
∑n
i=1 p

∞
i Ai. In this paper, we will

assume Ā is Hurwitz. This assumption is standard and even required by the ODE approach. For the
standard TD method, Ā is Hurwitz when the discount factor is smaller than 1, p∞i is positive for
all i, and the feature matrix is full column rank [51]. It is worth emphasizing that the assumption
limk→∞ Eb(zk) = 0 is also general. Suppose

∑n
i=1 p

∞
i bi 6= 0. This case can still be handled using

a shifting argument since Ā is Hurwitz. Notice the iteration ξk+1 = (I+αA(zk))ξk+αb(zk) can be

rewritten as ξk+1 − ξ̃ = ξk − ξ̃ + α
(
A(zk)(ξk − ξ̃) +A(zk)ξ̃ + b(zk)

)
for any ξ̃. Now we denote

b̃i = Aiξ̃ + bi and the above iteration just becomes ξk+1 − ξ̃ = (I + αA(zk))(ξk − ξ̃) + αb̃(zk).
When Ā is Hurwitz (and hence invertible), we can choose ξ̃ = −(

∑n
i=1 p

∞
i Ai)

−1(
∑n
i=1 p

∞
i bi) such

that
∑n
i=1 p

∞
i b̃i =

∑n
i=1 p

∞
i (Aiξ̃ + bi) = 0.

Remark 2 (Generality of (4)). Notice that (4) provides a general jump system model for linear
stochastic schemes that may have more complicated forms than (5). However, (4) can not be directly
used to cover nonlinear stochastic approximation schemes. See [53, 11] for recent finite sample
analysis results on nonlinear stochastic approximation over non-IID data.
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4 Analysis under the IID assumption

For illustrative purposes, we first present the analysis for (6) under the IID assumption (P(zk = i) =
pi ∀i). In this case, the analysis is significantly simpler, since {Eξk} and {E

(
ξk(ξk)T

)
} directly

form LTI systems with much smaller dimensions. We denote µk := Eξk and Qk := E
(
ξk(ξk)T

)
.

Then the following equations hold for the general jump system model (4)

µk+1 =

n∑
i=1

pi(Hiµ
k +Gi) = H̄µk + Ḡ,

vec(Qk+1) = (

n∑
i=1

piHi ⊗Hi) vec(Qk) +

(
n∑
i=1

pi(Hi ⊗Gi +Gi ⊗Hi)

)
µk +

n∑
i=1

piGi ⊗Gi.

(13)

There are many ways to derive the above formulas. One way is to first show qki = piµ
k and

Qki = piQk in this case and then apply (7) and (8). Another way is to directly modify the proof
of Theorem 1 (which is presented in the supplementary material). Now consider the jump system
model (6) under the assumption Eb(zk) =

∑n
i=1 pibi = 0. In this case, we have Hi = I + αAi,

Gi = αbi, and yk = 1. Denote Ā :=
∑n
i=1 piAi. We can directly obtain the following result.

Theorem 1. Consider the jump system model (6) with Hi = I + αAi, Gi = αbi, and yk = 1.
Suppose {zk} is sampled from N using an IID distribution P(zk = i) = pi. In addition, assume∑n

i=1 pibi = 0. Then µk and vec(Qk) are governed by the following LTI system:[
µk+1

vec(Qk+1)

]
=

[
H11 0
H21 H22

] [
µk

vec(Qk)

]
+

[
0

α2
∑n
i=1 pi(bi ⊗ bi)

]
, (14)

whereH11,H21 andH22 are determined as

H11 = I + αĀ,

H21 = α2
n∑
i=1

pi(Ai ⊗ bi + bi ⊗Ai),

H22 = In2
ξ

+ α(I ⊗ Ā+ Ā⊗ I) + α2
n∑
i=1

pi(Ai ⊗Ai).

(15)

In addition, if σ(H22) < 1, we have[
µk

vec(Qk)

]
=

([
H11 0
H21 H22

])k ([
µ0

vec(Q0)

]
−
[

µ∞

vec(Q∞)

])
+

[
µ∞

vec(Q∞)

]
(16)

where µ∞ = limk→∞ µk = 0, and vec(Q∞) is given as

vec(Q∞) = lim
k→0

vec(Qk) = −α

(
I ⊗ Ā+ Ā⊗ I + α

n∑
i=1

pi(Ai ⊗Ai)

)−1( n∑
i=1

pi(bi ⊗ bi)

)
(17)

Proof. For completeness, a detailed proof is presented in the supplementary material.

Now we discuss the implications of the above theorem for TD learning. For simplicity, we denote

H =

[
H11 0
H21 H22

]
.

Stability condition for TD learning. From the LTI theory, the system (14) is stable if and only if
H is Schur stable. We can apply Proposition 3.6 in [14] to show thatH is Schur stable if and only
ifH22 is Schur stable. Hence, a necessary and sufficient stability condition for the LTI system (14)
is that H22 is Schur stable. Under this condition, the first term on the right side of (16) converges
to 0 at a linear rate specified by σ(H), and the second term on the right side of (16) is a constant
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matrix quantifying the steady state covariance. An important question for TD learning is how to
choose α such that σ(H22) < 1 for some given {Ai}, {bi}, and {pi}. We provide some clue to this
question by applying an eigenvalue perturbation analysis to the matrixH22. We assume α is small.
Then under mild technical condition2, we can ignore the quadratic term α2

∑n
i=1 pi(Ai ⊗Ai) in the

expression ofH22 and use λmax(In2
ξ

+ α(I ⊗ Ā+ Ā⊗ I)) to estimate λmax(H22). We have

λmax(H22) = 1 + 2λmax real(Ā)α+O(α2). (18)

Then we immediately obtain σ(H22) ≈ 1 + 2 real(λmax real(Ā))α+O(α2). Therefore, as long as Ā
is Hurwitz, there exists sufficiently small α such that σ(H22) < 1. More details of the perturbation
analysis are provided in the supplementary material.

Exact limit for the mean square error of TD learning. Obviously, µk converges to 0 at the rate
specified by σ(I + αĀ) due to the relation µk = (I + αĀ)kµ0. Applying Proposition 3 and making
use of the block structure in H, one can show vec(Q∞) = α2(In2

ξ
− H22)−1 (

∑n
i=1 pi(bi ⊗ bi)),

which leads to the result in (17). A key message here is that the covariance matrix converges linearly to
an exact limit under the stability condition σ(H22) < 1. We can clearly see limk→0 vec(Qk) = O(α)
and can be controlled by decreasing α. When α is large, we need to keep the quadratic term
α
∑n
i=1 pi(Ai ⊗ Ai). Therefore, our theory captures the steady-state behavior of TD learning for

both small and large α, and complement the existing finite sample bounds in literatures. To further
compare our results with existing finite sample bounds, we obtain the following result for the mean
square error of TD learning.
Corollary 1. Consider the TD update (12) with Ā being Hurwitz. Suppose σ(H22) < 1 and P(zk =
i) = pi ∀i. Then limk→∞ E‖θk − θ∗‖2 exists and is determined as δ∞ := limk→∞ E‖θk − θ∗‖2 =
trace(Q∞) where Q∞ is given by (17). In addition, the following mean square TD error bounds
hold for some constant C0 and any arbitrary small positive ε:

δ∞ − C0(σ(H) + ε)k ≤ E‖θk − θ∗‖2 ≤ δ∞ + C0(σ(H) + ε)k. (19)

Finally, for sufficiently small α, one has limk→∞ E‖θk − θ∗‖2 = O(α). If λmax(In2
ξ

+ α(I ⊗ Ā+

Ā⊗ I)) is a semisimple eigenvalue, then σ(H) = σ(H11) = 1 + real(λmax real(Ā))α for small α.

Proof. Recall that we have E‖θk − θ∗‖2 = trace(Qk). Taking limits on both sides leads to the
expression for δ∞. Then we can apply Proposition 2 to obtain a linear convergence bound for Qk
which eventually leads to (19). Notice Ā is assumed to be Hurwitz. Therefore, we can apply standard
matrix perturbation theory to show δ∞ = O(α) and σ(H) = σ(H11) = 1 + real(λmax real(Ā))α for
sufficiently small α.

The above corollary gives both upper and lower bounds for the mean square error of TD learning.
From the above result, the final TD estimation error is actually exactly on the order of O(α). This
justifies the tightness of the existing upper bounds for the final TD error up to a constant factor. From
the above corollary, we can also see that one can obtain a faster convergence rate at the price of
getting a bigger steady state error. This is consistent with the finite sample bound in the literature
[6, 45]. SinceH21 = O(α2), it is possible to tighten the rate as σ(H22) ≈ 1 + 2 real(λmax real(Ā))α
by allowing some extra error on the order of O(α). We omit the details for such modifications.

5 Analysis under the Markov assumption

Now we analyze the behaviors of TD learning under the general assumption that {zk} is a Markov
chain. Recall that the augmented mean vector qk and the augmented covariance matrix Qk have been
defined in Section 3. We can directly modify (9) to obtain the following result.
Theorem 2. Consider the jump system model (6) with Hi = I + αAi, Gi = αbi, and
yk = 1. Suppose {zk} is a Markov chain sampled from N using the transition matrix P . In
addition, define pki = P(zk = i) and set the augmented vector pk :=

[
pk1 pk2 . . . pkn

]T
.

Clearly pk = (PT)kp0. Further denote the augmented vectors as b :=
[
bT1 bT2 . . . bTn

]T
,

2One such condition is that λmax(In2
ξ

+ α(I ⊗ Ā+ Ā⊗ I)) is a semisimple eigenvalue.
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B̂ =
[
(b1 ⊗ b1)T . . . (bn ⊗ bn)T

]T
, and set S(bi, Ai) := (bi ⊗ (I + αAi) + (I + αAi) ⊗ bi).

Then qk and vec(Qk) are governed by the following LTI model:[
qk+1

vec(Qk+1)

]
=

[
H11 0
H21 H22

] [
qk

vec(Qk)

]
+

[
α((PT diag(pki ))⊗ Inξ)b
α2((PT diag(pki ))⊗ In2

ξ
)B̂

]
, (20)

whereH11,H21 andH22 are given by
H11 = (PT ⊗ Inξ) diag(Inξ + αAi),

H21 = α

p11S(b1, A1) . . . pn1S(bn, An)
...

. . .
...

p1nS(b1, A1) . . . pnnS(bn, An)

 ,
H22 = (PT ⊗ In2

ξ
) diag((Inξ + αAi)⊗ (Inξ + αAi)).

(21)

In addition, the following closed-form solution holds for any k

qk = (H11)kq0 + α

k−1∑
t=0

(H11)k−1−t((PT diag(pti))⊗ Inξ)b,

vec(Qk) = (H22)k vec(Q0) +
k−1∑
t=0

(H22)k−1−t
(
H21q

t + α2((PT diag(pti))⊗ In2
ξ
)B̂
)
,

(22)

whereH11,H21 andH22 are determined by (21).

Proof. A detailed proof is presented in the supplementary material. We present a proof sketch here.
Notice (20) is a direct consequence of (7) and (8) (which are special cases of Proposition 3.35 in [14]).
Specifically, it is straightforward to verify the following equations using the Markov assumption

qk+1
j =

n∑
i=1

pij
(
(I + αAi)q

k
i + αpki bi

)
, (23)

Qk+1
j =

n∑
i=1

pij
(
(I + αAi)Q

k
i (I + αAi)

T + 2α sym((I + αAi)q
k
i b

T
i ) + α2pki bib

T
i

)
. (24)

Then we can apply the basic property of the vectorization operation to obtain (20). Applying (2) to
iterate (20) directly leads to (22).

Therefore, the evolutions of qk and Qk can be fully understood via the well-established LTI system
theory. Now we discuss the implications of Theorem 2 for TD learning.

Stability condition for TD learning. Similar to the IID case, the necessary and sufficient stability
condition is σ(H22) < 1. NowH22 becomes a much larger matrix depending on the transition matrix
P . An important question is how to choose α such that σ(H22) < 1 for some given {Ai}, {bi}, P ,
and {p0}. Again, we perform an eigenvalue perturbation analysis for the matrix H22. This case is
quite subtle due to the fact that we are no longer perturbing an identity matrix. We are perturbing the
matrix (PT ⊗ In2

ξ
) and the eigenvalues here are not simple. Under the ergodicity assumption, the

largest eigenvalue for (PT ⊗ In2
ξ
) (which is 1) is semisimple. Hence we can directly apply the results

in Section II of [35] or Theorem 2.1 in [42] to show
λmax(H22) = 1 + 2λmax real(Ā)α+ o(α), (25)

where Ā =
∑n
i=1 p

∞
i Ai and p∞ is the unique stationary distribution of the Markov chain under the

ergodicity assumption. Then we still have σ(H22) ≈ 1 + 2 real(λmax real(Ā))α+ o(α). Therefore,
as long as Ā is Hurwitz, there exists sufficiently small α such that σ(H22) < 1. This is consistent
with Assumption 3 in [45]. To understand the details of our perturbation argument, we refer the
readers to the remark placed after Theorem 2.1 in [42]. Notice we have

H22 = PT ⊗ In2
ξ

+ α(PT ⊗ In2
ξ
) diag(Ai ⊗ I + I ⊗Ai) +O(α2).

The largest eigenvalue of PT ⊗ In2
ξ

is semisimple due to the ergodicity assumption. Then the
perturbation result directly follows as a consequence of Theorem 2.1 in [42]. More explanations are
also provided in the supplementary material.
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Exact limit for the mean square TD error and related convergence rate. Assume the Markov
chain {zk} is aperiodic and irreducible. Then we have pt → p∞ at some linear rate where p∞ is the
stationary distribution. In this case, we can apply Proposition 3 to show that the mean square error of
TD learning converges linearly to an exact limit.
Corollary 2. Consider the TD update (12) with Ā being Hurwitz. Let {zk} be a Markov chain
sampled fromN using the transition matrix P . Suppose σ(H22) < 1. We set N = nn2ξ . If we assume
pk → p∞ where p∞ is the stationary distribution for {zk}, then we have

q∞ = lim
k→∞

qk = α(I −H11)−1((PT diag(p∞i ))⊗ Inξ)b,

vec(Q∞) = lim
k→0

vec(Qk) = α2(IN −H22)−1
(
α−2H21q

∞ + ((PT diag(p∞i ))⊗ In2
ξ
)B̂
)
,

δ∞ = lim
k→∞

E‖θk − θ∗‖2 = (1T
n ⊗ vec(Inθ )

T) vec(Q∞).

(26)

If we further assume the geometric ergodicity, i.e. ‖pk − p∞‖ ≤ Cρ̃k, then we have
δ∞ − C0 max{σ(H) + ε, ρ̃}k ≤ E‖θk − θ∗‖2 ≤ δ∞ + C0 max{σ(H) + ε, ρ̃}k, (27)

where C0 is some constant and ε is an arbitrary small positive number. For sufficiently small α,
we have δ∞ = O(α). If λmax(PT ⊗ In2

ξ
+ α(PT ⊗ In2

ξ
) diag(Ai ⊗ I + I ⊗ Ai)) is a semisimple

eigenvalue, then we further have σ(H) = 1 + real(λmax real(Ā))α+ o(α) for sufficiently small α.

Proof. Notice E‖θk − θ∗‖2 = (1T
n ⊗ vec(Inξ)

T) vec(Qk). We can directly apply Theorem 2,
Proposition 1, and Proposition 3 to prove (26) and (27). When α is small, we can apply the Laurent
series trick in [2, 24] to show that limk→0 vec(Qk) = O(α) and δ∞ = O(α). The difficulty here
is that IN − PT ⊗ In2

ξ
is a singular matrix and hence (IN −H22)−1 does not have a Taylor series

around α = 0. Therefore, we need to apply some advanced matrix inverse perturbation result to
perform a Laurent expansion of (IN −H22)−1. By using the ergodicity assumption and the matrix
inverse perturbation theory in [2, 24], we can obtain the Laurent expansion of (IN −H22)−1 and
show limk→0 vec(Qk) = O(α). Consequently, we have δ∞ = O(α). By applying Theorem 2.1 in
[42], we can show σ(H) = 1 + real(λmax real(Ā))α+ o(α).

Due to the assumption
∑n
i=1 p

∞
i bi = 0, we have limk→∞ qk 6= 0 in general but µ∞ = 0. Again, we

have obtained both upper and lower bounds for the mean square TD error. Our result states that under
mild technical assumptions, the final TD error is actually exactly on the order of O(α). This justifies
the tightness of the existing upper bounds for the final TD error [6, 45] up to a constant factor. From the
above corollary, we can also see the trade-off between the convergence rate and the steady state error.
Clearly, the convergence rate in (27) also depends on the initial distribution p0 and the mixing rate of
the underlying Markov jump parameter {zk} (which is denoted as ρ̃). If the initial distribution is the
stationary distribution, i.e. p0 = p∞, the input to the LTI dynamical system (20) is just a constant for
all k and then we will be able to obtain an exact formula similar to (16). However, for a general initial
distribution p0, the mixing rate ρ̃ matters more and may affect the overall convergence rate. One
resultant guideline for algorithm design is that increasing α may not increase the convergence rate
when the mixing rate ρ̃ dominates the convergence process. When α becomes smaller and smaller,
eventually σ(H) is going to become the dominating term and the mixing rate does not affect the
convergence rate any more. Similar to the IID case, for sufficiently small α, it seems possible to
obtain alternative upper bounds in the form of E‖θk − θ∗‖2 ≤ δ∞ + O(α) + C0(σ(H22) + ε)k

where σ(H22) ≈ 1 + 2 real(λmax real(Ā))α. Such modifications are not pursued in this paper.

Algorithm design. Here we make a remark on how our proposed MJLS framework can be further
extended to provide clues for designing fast TD learning. When α (or even other hyperparameters
including momentum term) is changing with time, we can still obtain expressions of vec(Qk) and qk
in an iterative form. However, bothH and G depend on k now. Then given a fixed time budget T , in
theory it is possible to minimize the mean square estimation error at T subject to some optimization

constraints in the form of a time-varying iteration
[

qk+1

vec(Qk+1)

]
= H(k)

[
qk

vec(Qk)

]
+ G(k)uk. One

may use this control-oriented optimization formulation to gain some theoretical insights on how
to choose hyperparameters adaptively for fast TD learning. Clearly, solving such an optimization
problem requires knowing the underlying Markov model. However, this type of theoretical study
may lead to new hyperparameter tuning heuristics that do not require the model information.
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