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Abstract Intelligent mobile robotic agents demand
optimal motion planners with minimal query time. Most
contemporary algorithms lack one of these two required
aspects. This paper proposes an efficient path-planning
scheme based on cellular automata (CA) that generates
optimal paths in the minimum time. A Cellular automaton
is evolved over the entire search space and subsequently
used for the determination of the shortest path. This
approach generates a parent-child relationship for each
cell in order to minimize the search time. Performance
comparisons with A*, Dijkstra’s, D* and MPCNN have
proven it to be time-efficient. Analysis, simulation and
experimental results have proven it to be a robust
and complete path-planning scheme. Also it has
demonstrated to be time-efficient in both static and
dynamic environments.

Keywords Cellular Automata, Path-planning, Obstacle
Avoidance

1. Introduction

Path-planning is an essential constituent of the design of
an intelligent mobile robot. The field of motion-planning
has been explored in detail by researchers over the past
two decades with the aim of developing an algorithm
that shows convergence upon the optimal path in the

minimum possible time. This work aims to develop an
efficient path planner that provides the shortest path from
robot to goal location in a grid environment.

Visibility graphs [1], [2] and Voronoi diagrams [3] are
among the earlier techniques exploring optimal path
searches. These algorithms offered promising results but
they were mainly developed for static environments.
Furthermore, a visibility graph is computationally
expensive and unsuitable for use in real-time systems,
whereas Voronoi diagrams fail to provide an optimal
solution. Another class of algorithms developed for this
purpose are cell decomposition methods [4].However, the
computational efficiency of cell decomposition techniques
is highly dependent upon the size of the cells, thereby
also making it an inefficient algorithm for real-time
implementations. Another approach is the use of potential
field [5] methods, which provides encouraging results in
most cases but which fail in some specific situations where
attractive and repulsive fields tend to cancel each other,
i.e., local minima [6].

In order to overcome the problems confronting the
above-mentioned algorithms, probabilistic approaches,
namely PRMs [7] and RRTs [8], [9] have been developed.
These algorithms are capable of finding paths in complex
environments but, due to their probabilistic nature, they
do not provide optimal solutions. Furthermore, their
sampling strategies tend to become complex in the case of
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narrow passages. It has been proven that RRT does not
approach optimality, whereas RRT* [10], [11] requires an
infinite number of iterations to converge upon optimality.

Another popular category of algorithms that have
been extensively exploited for path-planning problems
comprises heuristic-based search algorithms. In this
category of algorithms, A* search [12] and Dijkstra [13]
have been used for both static and dynamic environments.
The D* algorithm [14] is another heuristic-based search
algorithm, designed to handle specifically dynamic
obstacles. The method presented in [15] uses one such
heuristic search method for 3D vision-based maps. The
present work carries out a comparative analysis with these
search algorithms below.

More recently, machine learning paradigms have been
utilized for global obstacle-free path searches. One
of the major advances in this paradigm is the use of
genetic algorithms [16], [17] and fuzzy-based [18], [19]
approaches for the extraction of global collision-free paths.
Another promising learning paradigm for this problem
is the use of neural networks [20]. The problem with
these approaches is that they require a large database
to learn and generalize. It is generally difficult and
sometimes impossible to provide such data. However,
an exception to the rule is the use of a modified pulse
coupled neural network (MPCNN) [21], which is capable
of path-planning in arbitrarily complex environments and
which has been proven to provide the globally shortest
path. However, the major problem with this technique is
that it is computationally inefficient. A comparison of our
method with this technique is presented later in this paper.

Finite automata comprise a class of algorithms with
discrete inputs and outputs. Cellular automata [22]
are a special class of finite automata which constitute
an n-dimensional array of cells wherein each cell can
take a set of possible values. Path-planning using
cellular automata has been addressed previously and
a straight-moving path planner has been proposed
in [23] which derives its strategy from a multi-agent
path-planning architecture using cellular automata [24].
However, this approach does not provide an optimal
solution since it requires an elaborate search of the
environment which degrades the efficiency of the method.
In [25], CA is applied to polar depth maps to determine
a collision-free path. However, this work is focused on
the local-planning problem, which may result in a globally
non-optimal path. Another similar sub-optimal approach
that utilizes CA is given by Behring et al. [26]. A
case in which a diamond-shaped robot is considered for
navigation in a 2D environment using CA is presented
in [27]. With this strategy, CA are used to determine
cells that are equidistant from obstacles and which later
determine the path of robot. Since the path is required to
be equidistant from all obstacles, it therefore results in a
non-optimal solution.

This paper presents a CA-based approach to compute the
shortest path in a 2D configuration space. Rule-based
exploration of the environment is coupled with

Figure 1. System modules

parent-child relationships for each cell to simplify the
search process. This work focuses on path-planning in 2D
grid environments. Since, in a grid environment, the robot
is constrained to move only in eight possible directions,
the optimality of the algorithm presented in this work is
also constrained. However, this constraint can be relaxed
by taking a sparse map of the environment(at the cost of
reduced accuracy). Simulations and ground results have
verified it to be an efficient method, both in the presence of
static as well as dynamic obstacles. Our proposed method
assumes that the robot and obstacle locations are known
a priori. For environment perception, we have utilized a
RGB-D camera (Microsoft Kinect). Kinect is being used
extensively in robotics research. In [28], a quad-rotor uses
a Kinect camera for navigation as well as localization.
Kinect Monte Carlo localization [29] utilizes RGB-D Kinect
for scene simulation. In our experiments, we use Kinect to
determine the state of the robot and the various obstacles.
Based upon the information from this perception sensor, a
workspace is developed. The workspace is converted into
the configuration space and path-planning is carried out
using the proposed CA.

The main objective of this paper is to present a
novel CA-based real-time path-planning algorithm. The
effectiveness and completeness of the proposed algorithm
is demonstrated by carrying out a detailed comparison
with contemporary and well-established techniques, such
as A*, Dijkstra, MPCNN and D*. The rest of the paper
is organized as follows. Section 2 gives an overview
of the complete system. Section 3 highlights the model
of the proposed CA-based scheme. Section 4 explains
the computational steps of the proposed algorithm using
pseudo-code. A comparison of the proposed algorithm
with A* search, Dijkstra, D* and MPCNN is carried out in
Section 5. The next section 6 presents the simulation results
and the analysis of the proposed technique. Section 7 deals
with the experimental implementation and the results of
the proposed automata planner. Section 8 concludes the
paper.

2. System Overview

As given in Figure 1, the complete architecture
can be thought of as a combination of three
modules: vision-based object identification, CA-based
path-planning and robot control using the robot’s speed
and turn-rate parameters. The step-by-step control flow
of the three modules is presented in Figure 2 and each
module is discussed independently in the succeeding
paragraphs.
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2.1. Object Identification (Vision) Module

In this module, the Microsoft Kinect is utilized as an image
acquisition source to identify both the static and dynamic
obstacles as well as the robot. As shown in Figure 2
(a), the image is acquired in the first step and is then
processed in the second step to estimate the position and
orientation of the static obstacles, the dynamic obstacles
and the robot (details are given in Appendix A). Based
on the information provided by the vision module, the
workspace of the robot is generated (Figure 2 (b)). Since,
in this case, the robot is considered as a point robot in
the planning phase, the size of the obstacles needs to be
increased. Therefore, the robot’s workspace is further
processed using the Minkowski sum [30] to generate the
configuration space of the robot (as shown in Figure 2 (c)).

2.2. Configuration Space

The space of all possible configurations of a robot is
called the configuration space [11]. Consider a robot
R navigating in a 2-D Euclidean space, where the set
of all possible configurations of the robot is represented
by Q = {q1, q2, ...., qn} and the set of obstacles is
represented by O = {O1, O2, ...., On}. Accordingly, the
configuration space can be modelled as a continuous
mapping represented by τ : [0, 1] → Q, where τ(0) = qinit
and τ(1) = qgoal . The path-planning problem is to find a
path in the configuration space such that no configuration
of the robot collides with the obstacles. In other words, the
problem is to find a set of configurations of the robot from
qinit to qgoal in the free configuration space where:

Q f ree = {q ∈ Q | R(q) ∩ (
n⋃

i=1
Oi) = φ} (1)

Since the Robot can be of any arbitrary shape in the
workspace, the profile of the robot also needs to be
considered in the configuration space. This is done by
taking the Minkowski sum of the profile of the robot
R with every obstacle Oi. Hence, every obstacle in the
configuration space is remodelled such that:

R ⊕ Oi = {x + y |x ∈ R, y ∈ Oi} (2)

Since the shape of the robot has been catered for, it can now
be considered as a point robot in the configuration space.

2.3. Path Planning Module

The robot’s location identified by the vision module is
appended with the target location and the configuration
space of the robot (shown in Figure 2 (d)). This information
is passed on to the path planner. A CA-based path planner
utilizes this data and generates a collision-free path to
the goal state within the configuration space, as shown in
Figure 2 (e). The path returned by the planner is in the
form of a set of way-points that the robot is supposed to
pass through in order to reach its destination.

2.4. Robot Control Module

In the last step, we generate control commands for the
robot based on the way-points selected above. Based on
both the current and the next way-point robot control
parameters, the robot’s speed and turn-rate are generated
using the differential drive kinematics model. These
parameters are then issued to the robot through the
PlayerStage wireless interface. This complete loop of
planning and execution is repeated until the robot reaches
its destination.

3. CA Model

CA are decentralized, discrete space-time systems defined
as quadruples over a cellular space [24]. CA consist
of a large number of locally connected identical entities,
whereby each entity is updated based on a set of transition
rules.

CA are formally defined as quadruples (d, q, N, f ), where:

d Dimension of the CA.

q Set of the possible states of the CA.

N Set of the relative positions of the CA’s
neighbouring cells.

f Local function defining the local transition rule.

In the proposed algorithm, the CA architecture consists of
a 2D lattice of cells. Each cell constitutes of a six-element
tuple, the members of which are used in the evaluation of
the local transition function. These are:

(Sstate, Sc f , Sp f , ton, P(i,j), φs)

where:

Sstate Current state of the cell. 0 for off, 1 for on.

Sc f Child Flag. High if the cell is a child.

Sp f Parent Flag. High if the cell is a parent.

ton Time at which the cell transitioned to active

state.

P(i,j) Address of the parent cell.

φs Maintains the accumulative cost from goal to

the current cell.

Cells are interconnected in the local neighbourhood
within the constraints of the eight nearest neighbours,
which is also called ’type-II neighbourhood’ and ’Moore
neighbourhood’ [22]. For example, if d = 2, this
neighbourhood will comprise nine sites (as shown in
Figure 3).

The activation of each automaton is governed by the
following transition rules:

Rule: 1 - The current cell will become active if, and only
if, one of the neighbouring cells is in an active state and
the ton of the neighbouring cell causing it to activate is
less than t (where t is the time of the current iteration).
Otherwise, it will remain quiescent.
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(a) Image acquisition (b) Obstacle identification (c) Configuration space (d) Robot and target identified (e) Planned path

Figure 2. Compete system illustration

St
state(i, j) =




1 i f f ∃ St
state(i + m, j + n) = 1

& ton (i + m, j + n) < t
m, n ∈ {1,−1}

0 otherwise
(3)

Rule: 2 - A cell will only become a child of another cell if
the other cell is already in an active state with a ton < t.

St
c f (i, j) =




1 i f f ∃ St
state(i + m, j + n) = 1

& ton (i + m, j + n) < t
m, n ∈ {1,−1}

0 otherwise
(4)

Rule: 3 - A cell will only become a parent cell if it is
active, if it is already a child and if its ton < t.

St
p f (i, j) =




1 i f f ∃ St
state(i, j) = 1

& St
c f (i, j) = 1

& ton (i, j) < t
0 otherwise

(5)

Rule: 4 - A cell will only become a child of a neighbouring
cell with the lowest accumulative cost function.

φs(i, j) =




min(φs(i + m, j + n) + δ) i f f
∃ St

state(i + m, j + n) = 1
& St

p f (i + m, j + n) = 0

m, n ∈ {1,−1}
0 otherwise

(6)
where δ is the cost of connecting the current cell S(i, j)
with a neighbouring cell. The costs are:

δ =




|1| ∀S(i + m, j), S(i, j + n)
m, n ∈ {−1, 1}

|
√

2| ∀S(i + m, j + n)
m, n ∈ {−1, 1}

Rule: 5 - A cell will remember the address of its parent
cell as calculated in Rule (4).

P(i,j) = {(r, s)|φs(i, j) = min(φs(r, s) + δ)} (7)

Figure 3. Moore neighbourhood

4. The Algorithm

To plan a path using the proposed technique, all the
cells are initialized according to their state of occupancy.
Obstacles are initialized as NaN and free space as state
zero. The algorithm proceeds with the switching of states
in outward fashion from the goal location until the robot
cell is reached. In the next step, the path is extracted from
the robot to the target using parent child relationships.

The computation steps of the algorithm are as under:

1) Initialization:
∀S ∈ qobstacle=NaN, ∀S ∈ q f ree=0, Starget = 1, Sc f =
true,
φtarget = 0, ttarget

on = 0 and P(i, j) = (i, j)

2) CA iterations:
Repeat
Initialize f ire f lag = f alse.
For each cell

if(St
state == 0)

result=Execute rule 1 using (3).
if(result==true)

f ire f lag = true
Set ton for current cell.
Set child flag using Rule (2) as given by (4).
Update the cost of the current cell using (6).
Configure the parent of the current cell using (7).
Increment the firing count.
else
continue

else
if (Sp f == false)

if (ton < t)
Configure Sp f using (5)

if (Srobot==1)
return path

else if ( f ire f lag == true)
return failure
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4.1. Completeness of the Algorithm

The proposed algorithm is a complete algorithm, i.e., if a
solution exists, it will find it, otherwise it will declare that
no solution exists. At every iteration, the algorithm keeps
count of the number of cells which were activated during
that iteration. If, for an iteration, none of the cells are
activated, this means that there are no more cells which can
be activated, and hence no path exists. On the other hand,
as soon as the algorithm finds a path from the goal to the
robot, it is the optimal path which is declared as output.

To prove this, we suppose that the contrary is true, i.e.,
that the algorithm is not complete. Therefore, there exists
a path from start to goal but the algorithm cannot find it.
For this statement to be true, either the algorithm never
terminates or else it terminates incorrectly.

Suppose it never terminates. But, at any instant, if a
parent-child relationship could be built, a new cell will
be activated. According to Rule (4), a situation can
arise where there is no other neighbour left with an
accumulative cost lower than the current parent. Also,
there might be no cell in the neighbourhood which is in a
quiescent state. Hence, if there is no possible parent-child
relationship left, no cell will be activated. If no cell is
activated, the algorithm will declare that no path exists
from start to goal and will then terminate.

Suppose it terminates incorrectly. According to Rule (1),
a cell can only become active if its neighbouring cell was
active. In addition, the obstacle cells are configured to
be permanently off. Hence, an obstacle cell will never
become a child and, according to Rule (3), it will never
become a parent as well. Since an obstacle cell will never
be activated, the resultant path will never end inside
an obstacle. Also, since, according to Rule (1), no cell
can become active if its neighbours are not active, only
successive parent-child relationships are created, which
only terminate when the start point and goal point are
connected, and hence which produce a continuous path
from start to goal.

Figure 4. Solution of a complex maze using CA

Since both the above statements have been proved false,
the opposite is true (i.e., the algorithm is complete).

5. Performance Comparison

In order to rigorously gauge the performance of the
proposed algorithm and its improvements over the
existing algorithms, its performance is compared with
similar algorithms, namely the A*, Dijkstra, D* and
MPCNN algorithms. All these algorithms work on the
similar principle of the cost-based exploration of the search
space coupled with parent-child-based linking for the
retrieval of the shortest path.

5.1. Comparison with A*

A* [12], a search algorithm which has been extensively
exploited for the problems of path-planning and graph
traversals, utilizes a best first-search technique and returns
the least cost path given a start node and a goal node.
A* evaluates the cost of the path based upon the sum
(sometimes, a weighted sum is also considered) of the
path it has already traversed and an admissible heuristic
representing the path that is still to be covered. A* and
its variants are directly influenced by their heuristic
functions, whereas our proposed method is independent
of any such heuristic cost. In order to keep any comparison
unbiased, similar settings were created for both A* and our
proposed method. In our case, A* uses Euclidean distance
as its heuristic function with a unity cost for straight
neighbours and

√
2 as the diagonal neighbour cost. The

implementation of A* is taken from [31].

Figure 5 summarizes the performance comparison results
of the proposed method with the A* search. As shown in
Figure 5 (blue and yellow bars), the path lengths returned
by both the algorithms in most of cases are the same, with
a few exceptions in which A* results in a relatively longer
path than CA (however, the differences are negligible). In
terms of time efficiency, our proposed algorithm is much
better than the A* search, as shown in Figure 5 (green and
red bars). The query time increases with the increase in the
distance between the start node and the goal node. Here, it
is worth mentioning that the search time for A* is directly
influenced by the length of the path, whereas in the case
of CA the path length has a minimal effect on the search
time (the search time is well below 1 s in all the cases tested
with CA). Hence, CA not only determines the shortest path
but is also a time-efficient algorithm in comparison with
A*. Both the algorithms were tested under various obstacle
configurations and it was noted that, as the complexity of
the environment increases, CA becomes increasingly more
efficient than A*.

Figure 6 presents two possible comparison scenarios
which were considered. As presented here, in most of the
cases tested for comparison, the paths returned by A* and
CA were different but the commutative cost for both the
paths was the same.
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Figure 5. Path length and planning time-based comparison of CA with A*

(a) (b)

Figure 6. Sample images with paths returned by CA and A* searches

5.2. Comparison with Dijkstra’s Algorithm

Dijkstra’s algorithm [13] is yet another graph search
algorithm used for solving single-source shortest path
problems. Similar to the approach we presented in
this paper, Dijkstra’s algorithm utilizes a cost-based
approach for exploration of a graph and couples it with
the parent-child relationship for finding the resulting
path from robot to target node. Dijkstra’s algorithm
is a generalization of the A* algorithm (A* becomes
Dijkstra’s algorithm if the heuristic function is taken as
zero). Numerous comparisons of A* with Dijkstra’s
algorithm available in literature [32–34] have reported
that A* achieves much better performance through the
use of heuristics provided that the heuristic function
is admissible. [32] has experimentally shown that

A* outperforms Dijkstra’s algorithm using a Euclidean
heuristic function. Additionally, A* becomes more
advantageous as the size of the graph increases [33].
Since we have shown that our algorithm outperforms
the A* algorithm, it therefore also outperforms Dijkstra’s
algorithm.

5.3. Comparison with D*

Another algorithm that has been extensively utilized for
path-planning in dynamic scenarios is D* [14]. This
algorithm initially plans a path with limited obstacle
information and assumes that the unobservable space
is completely traversable. As the robot navigates, it
senses obstacles in the environment and performs local
modifications to the initially planned path.

Int J Adv Robot Syst, 2014, 11:93 | doi: 10.5772/585446



Sr. Initial path
length

Avg. CA time
(s)

Avg. D* time
(s)

1 904.428 1.5293 1.5213
2 767.703 1.3751 1.6436
3 874.201 1.4095 2.0083

Table 1. Comparison results with D*

In order to gauge performance, a comparison of the
proposed work with D* was carried out under identical
environments and using parameters. It was observed
that in all cases the path length computed by each
algorithm was the same; however, the computational time
involved reveals some important information regarding
the working of both algorithms. The analysis of the
comparative study reveals that D* takes, on average,
more time in computing the total path as compared to
the CA approach. Furthermore, in the absence of major
modifications required in the path to compensate for
dynamic obstacles, the behaviour of the D* algorithm is
much better. During simulations/experiments, it was
determined that D* is highly dependent upon the number
and dynamic behaviour of all obstacles present in the
environment. This is primarily due to the fact that,
whenever major modification in the initially planned
path is required, the behaviour of the D* algorithm
degrades significantly as compared to CA. A comparison
of computational times as robot moves from start to
goal locations is presented in Figure 7 (a). As mentioned
earlier, the sudden peaks in D*’s planning time appear
due to interaction of dynamic obstacles with the existing
path. Table 1 shows a summary of the analysis. It was
learned experimentally that the path lengths computed
by each algorithm were the same. However, the average
computational time for CA comes out better than D* as
the robot moves from start to goal. One of the settings in
which the comparison was conducted is shown in Figure 7
(b).

5.4. Comparison with MPCNN

Our proposed CA-based method was tested against the
recently proposed MPCNN. MPCNN has been shown
to be a robust method that can determine an optimal
path. MPCNN utilizes a similar approach to our proposed
method. It considers all the nodes of the graph as
neurons. The firing of each neuron is controlled by its
energy. Initially, the goal neuron is intentionally fired,
which propagates the chain. The target neuron activates its
neighbouring neurons as child neurons, thereby activating
them. Once a neuron is activated, its internal energy
increases with time and the neuron fires as its energy
reaches a particular level. This firing pattern of neurons
proceeds in a circular manner (called an ’autowave’) with
the target as the centre. As more and more neurons fire, the
autowave spreads outwards, thereby reaching the robot
neuron. Since all the neurons are coupled by parent-child
relations, the shortest path is retrieved by back-tracking
the neurons’ parent-child relationships.

Figure 8 (a) shows a comparison between CA and MPCNN
on the basis of computation time, where time axes for both
algorithms are shown separately (right axis for CA, left

axis for MPCNN). 100 random cases were tested, Figure
8 (a) clearly demonstrates that CA outperforms MPCNN,
while the path determined by CA was the same as that for
MPCNN. Statistically, the average time taken by CA was
8.19 ms whereas that of MPCNN was 749.94 ms. Figure
9 shows a comparison of the paths returned by CA and
MPCNN for a similar setting.

6. Simulation Results

In order to gauge the performance of the proposed
algorithm, we tested it in both static and dynamic
environments. In all the simulations, our proposed
method was proven to be an efficient algorithm in terms
of time and path-optimality. Some of these results
are discussed here. In all the subsequent figures, red
represents the robot, blue shows the target configuration,
black shows the obstacles and green shows the path
extracted by the planner. The algorithm was tested in
a challenging maze as shown in Figure 4, in which it
successfully provided an optimal solution.

6.1. Local Minima Evasion

In order to verify the completeness of our algorithm,
it was tested to plan a path in the presence of
a local minima. Local minima issues arise in the
presence of concave/U-shaped obstacles and, generally,
path-planning algorithms direct the robot towards the
centre of the obstacle instead of encouraging it to move at
the boundary of the obstacle in order to avoid it. However,
our algorithm considers the geometry of the obstacles
and plan manoeuvres accordingly, thereby avoiding local
minima problems. Figure 8 (b) shows the resultant path in
the presence of a local minima. It is clearly evident that the
proposed method evades the local minima efficiently.

6.2. Static Environment

Real-world robots often make use of SLAM-based
mapping of the environment. Therefore, we tested our
algorithm in real-world SLAM environments as shown in
Figure 9 (a). Figure 10 highlights the search pattern taken
by the proposed algorithm. In this case, it is evident that
there are two possible paths from the start to the goal
location, and at first it seems that the "Left" path is lower
in cost compared to the "Right" path. However, the search
pattern shown in Figure 10 reveals that in fact the path on
the "Right" is shorter then the "Left" one.

6.3. Dynamic Environment

To ensure that the proposed scheme works in real-time, it
is mandatory for the algorithm to work in the presence
of dynamic obstacles. To ascertain this, we simulated
real-world scenarios on PlayerStage [35]. Figure 11
to Figure 13 present the results for dynamic obstacle
avoidance, where the top row represents the path covered
by each robot from its starting location to its current
time-step. In these figures, there are a maximum of four
robots, and dynamic obstacle ’A’ is shown with a blue
trajectory, ’B’ is shown with a green trajectory and obstacle
’C’ is shown with a yellow trajectory, while the intelligent

Usman Ahmed Syed and Faraz Kunwar: Cellular Automata  
Based Real-time Path-planning for Mobile Robots

7



5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

 

 

Cellular Automata

Dstar

(a) Planning time-based comparison of CA and D* (b) Sample testing scenario used in the comparison

Figure 7. Performance comparison of CA and D*
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Figure 8. Performance comparison of CA with MPCNN and local minima evasion
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Figure 9. Comparison of paths in a 2D SLAM environment: CA vs MPCNN
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Figure 10. Cellular automata exploration pattern

R

T

A

B

A
R

B

T

A

B

R

T

A
R

B

T

A

B
R

T

(a) (b) (c) (d) (e)

Figure 11. Dynamic environment with two moving obstacles
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Figure 12. Dynamic environment with three dynamic obstacles
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Figure 13. Pursuer robot with a target moving in a sinusoidal manner

path planner robot ’R’ is shown with a red trajectory. Here
,’T’ represents the target cell for the robot.

Figure 11 represents a test scenario where robot ’R’ must
intelligently traverse through an L-shaped hallway to
reach its destination. Initially, the robot plans a path and
begins navigation, as shown in Figure 11 (a); if the path is
not updated, the robot will have a head-on collision with
obstacle ’A’. Figure 11 (b) shows a successful avoidance
manoeuvre where the robot reroutes its path to pass
around the dynamic obstacle. Here, the planner initially
executes a solution that makes robot ’R’ pass in-front of
obstacle ’A’. However, in the next time-step the planner
realizes that passing in front of obstacle ’A’ will cause
a collision. Therefore, the path is dynamically updated
accordingly. While traversing towards the goal, robot ’R’
is next intercepted by obstacle ’B’, and in this case the
planner initially determines its optimal path by adopting
a path to the right of the obstacle, as shown in Figure 11
(c). As shown in Figure 11 (d and e), the robot successfully
evades obstacle ’B’.

Figure 12 (a) shows a case where a robot has to reach a goal
location while avoiding three closely-moving dynamic
obstacles in a narrow hallway. Figure 12 (b) shows
how a CA-based path planner avoids obstacle ’A’. After
avoiding obstacle ’A’, robot ’R’ immediately encounters
obstacle ’B’, which is about to have a head-on collision
with robot ’R’, as shown in Figure 12 (c). The head-on
collision is successfully avoided by moving to the right,
as shown in Figure 12 (d). However, as a result of this
avoidance manoeuvre robot ’R’ comes directly into the
path of obstacle ’C’. Therefore, robot ’R’ initiates another
avoidance manoeuvre to reach its goal, as shown in Figure
12 (e).

Another real-world scenario is where the target is non
static. Figure 13 shows an example in which the target is
moving in a sinusoidal manner. Figure 13 (a and b) show
how the pursuer robot ’R’ initially tries to catch the target
’T’. As long as the target is moving towards the right, the
pursuer also traverses to the right ( Figure 13 (c) and Figure
13 (d)). As soon as the target changes direction, robot ’R’
also changes direction, closing the distance and ultimately
catching the target, as shown in Figure 13 (e).

7. Experiments

To validate the performance of the proposed planner, it
was tested in both static and dynamic environments. As
presented in the experimental results here, the CA-based

Components characteristics

Two mobile
robots

one wirelessly-controlled P3AT. The
dynamic obstacle is indigenously developed

and preprogrammed

PC Host computer with a wireless module

Microsoft
Kinect

resolution: 640 x 480 and distance from
floor: 3 m

Table 2. Experimental hardware

Static Obstacle

Static Obstacle
Dynamic

 Obstacle

Robot

Camera

Figure 14. Experimental setup.

planner proved to be a real-time algorithm in both static
and dynamic environments. Numerous experiments were
conducted to verify the efficacy of the proposed method,
both for static and dynamic environments. Two of these
experiments are presented here for discussion.

The hardware utilized in the experimental work is
provided in Table 2. The software, running on an i3
2.26 GHz processor PC, is constitutive of three processes:
image acquisition and processing, path-planning and
robot control. Microsoft Kinect captures the workspace
activity and transfers it to PC. The vision algorithm
determines objects of interest and, based upon this
information, CA plans a path. Control parameters are
generated based upon the path way points.

A number of experiments were conducted for both static
and dynamic obstacles. However, only a small subset of
these experiments (one for each case) is discussed in the
following paragraphs. The complexity of the experiments
discussed here is given in Table 3. The experiments
were conducted using a P3AT mobile robot autonomously
controlled via wireless using PlayerStage (as shown in
Figure 14 ). Each experiment was repeated three times
under identical conditions and also compared with the
simulated robot behaviour for that particular scenario.
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Figure 15. Experimental results of path-planning with CA in a static environment

Figure 16. Path followed by the robot in a static environmental setting

Sr. complexity
max.
speed
(m/s)

max.
turn-rate
(degrees)

obstacle
speed
(m/s)

1 Three static obstacles 0.3 25 -

2
Two static obstacles

and one dynamic
obstacle

0.25 20 0.05

Table 3. Path-planning experiments

7.1. Static Environment

In the static case, the robot encounters three obstacles. It
has to avoid two obstacles in its path en route to the target
while keeping itself sufficiently far away from the third
obstacle. Initially, a path is planned taking the current
robot and obstacle locations into account. Although the
control commands are generated in accordance with the
desired trajectory, shortly after the commands are executed
the robot deviates from its desired path due to slippage
and other inherent uncertainties. In order to keep the robot

on the optimal track, sensor measurements are acquired
and replanning is carried out. This planning and execution
cycle continues until the robot successfully reaches its
destination while avoiding the obstacles ( Figure 15).

Figure 16 presents a comparison of the paths taken by
the robot for three test runs conducted under identical
conditions. Simulation studies were also conducted to
compare the path obtained in the experiments with the
path obtained in simulations. Figure 16 shows that the
path taken by the robot, in presence of obstacles, expanded
in the workspace using Minkowski’s sum, closely matches
the simulated path of the robot.

7.2. Dynamic Experiment

The proposed path planner has also been successfully
applied to dynamic path-planning scenarios. In each
experiment, the planner succeeded in planning
collision-free global paths while avoiding every dynamic
obstacle present in the environment. Figure 17 shows
one of the many experiments that we had conducted in
which the robot successfully evaded a dynamic obstacle
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Figure 17. Experimental results of path-planning with CA in a dynamic environment

(a) (b)

(c) (d)

(e) (f)

Figure 18. Experimental comparison of the paths adopted by the robot in a dynamic environment

Int J Adv Robot Syst, 2014, 11:93 | doi: 10.5772/5854412



Figure 19. Markers used for object detection

and two static obstacles. Figure 18 presents the path taken
by the robot for a dynamic case at different instants of
time in reaching its goal. In this case, the obstacle in the
workspace has been expanded using Minkowski’s sum.
Here, it is assumed that the manoeuvrability and speed
of the robot is much higher than the obstacle, enabling
the robot to execute an effective avoidance manoeuvre
before any collision can take place. The experiment shows
the ability of the algorithm to dynamically update its
path in the next time step in which an obstacle enters the
planned path between the robot and the target. Repeated
experimentation has proven that our method does not
require any special treatment of dynamic obstacles (e.g.,
the prediction of a moving obstacle’s speed or trajectory,
etc.) and the repeated dynamic updating of the path is
robust enough to deal with dynamic obstacles.

Figure 17 (a) shows the first path returned by the CA
planner. Initially, the dynamic obstacle is not in close
proximity to the robot and there is free space between the
static and dynamic obstacles. Therefore, CA plans a path
for evading the two static obstacles that is sufficiently far
away from the dynamic obstacle. The robot follows this
planned path from its start location until it reaches the
position shown in Figure 18 (a). When the robot reaches
this location, it recalculates and alters its previous path
due to the motion of the dynamic obstacle, as shown in
Figure 17 (b). At this point, the dynamic obstacle is very
close to the static obstacle. The previously calculated path
becomes infeasible, since there is no space between the
static and the dynamic obstacle. A new path is calculated
that is much longer than the previous path. In the next
time-step, the dynamic obstacle proceeds closer towards
the robot, causing imminent collision; therefore, a new
path is calculated. In the next time-step (Figure 18 (c)),
the dynamic obstacle is closest to the robot, and CA again
determines the path - this time, a much shorter path is
returned since the obstacle has moved from its previous
location. In the next interval (Figure 18 (d)), the dynamic
obstacle has been avoided and the planner re-plans a
path that takes it away from the static obstacle (Figure 17
(e)). The robot executes this path and reaches the location
shown in Figure 18(e). While navigating from the location
as presented Figure 17 (f) to Figure 17 (g), the robot moves
much closer to the static obstacle due to robot momentum
and slippage issues. In order to avoid the collision of the

robot with the static obstacle (Figure 18 (e)), it re-plans its
path (Figure 17 (g)) and finally reaches its target (Figure 18
(f)).

This experiment is repeated three times and compared
with the simulation results. In this case, the experimental
results vary slightly from the simulation results. This is
mainly because the robot’s dynamic and update rate is
much faster in the case of the simulation as compared with
the experimental case.

8. Conclusion

The paper presents a CA-based real-time path planner that
always results in an optimal path. A CA is coupled with a
parent-child relationship for each cell to achieve improved
and real-time performance. PlayerStage simulations
and experiments are conducted to validate the real-time
behaviour of the proposed scheme. The results prove that
it outperforms previous path-planning algorithms in light
of optimality and time efficiency, as shown in comparison
with A*, Dijkstra, D* and MPCNN.
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Appendix - Visual Identification of Objects

A vision-based object identification system repeatedly
makes use of the Hough circle transform to detect the
markers installed on different obstacles and the robot.
In our experiments, the robot bears two white circles of
different radii - one locates the robot’s centre and the
other determines its orientation. Red circles are used
for dynamic obstacles while green circles denote static
obstacles, as shown in Figure 19.

In order to identify the location of different objects, a
Hough Circle transform [36] is applied. The result of this
operation is the identification of different makers installed
in the workspace. In the next step, the centres of all the
circles are visited to differentiate between various objects.
At the centre of all the objects, a 3x3 region is sampled and
its average red, green, blue and average greyscale values
are calculated. Based upon the dominating colour, each
circle is associated with an object. This information and the
obstacles’ sizes are then used to generate the workspace of
the robot.

A special case holds for the white robot circle. The
algorithm initially identifies the larger white circle and
subsequently searches for the smaller white circle. This
search is performed by sampling at a specified radius with
the origin at the centre of the larger circle. A 3x3 path is
sampled at increments of 15 degrees in a circular fashion.
The average greyscale values at each sample point are
determined to identify the white patch. Once this patch
is identified we consider its neighbouring region as the
“region of interest” for finding the center of the smaller
circle. To locate the center of the smaller circle Hough
Circle Transform is applied to the region of interest. Once
the center of smaller circle is found, the line joining the
center of the two circles gives the orientation of the robot
in global frame.
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