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a b s t r a c t

Real time path planning formobile robots requires fast convergence to optimal paths. Most rapid collision
free path planning algorithms do not guarantee the optimality of the path. In this paper we present a
Guided Autowave Pulse Coupled Neural Network (GAPCNN) approach for mobile robot path planning.
The proposed model is a novel approach that improves upon the recently presented Modified PCNN
(MPCNN) by introducing directional autowave control and accelerated firing of neurons based on a
dynamic thresholding technique. Simulation studies and experimental results in both static as well as
dynamic environments confirm GAPCNN to be a robust and time efficient path planning scheme for
finding optimal paths.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The development of an Intelligent Transportation System (ITS),
which can drive autonomously to a desired location, requires solv-
ing such problems as Localization, Path Planning and Autonomous
Obstacle/Collision Avoidance. One of the earliest and most well-
known problems for such a system specifically for indoor domains,
is the generation of collision free global path for the robot to move
to a given point in a dynamic environment. Conventional path
planning approaches employed for such motion planning can be
categorized into four types including Visibility graphs [1,2], Cell
Decomposition [3], Voronoi Diagrams [4] and the Potential Field
methods [5,6]. Most of these algorithms suffer from time ineffi-
ciency in their computation and are not designed for use in real-
time path planning. Also, Potential Field methods are known to
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suffer unwanted local minima in which the robot gets stuck in a
U-shaped obstacle [7].

Sampling-based algorithms such as Probabilistic Road Maps [8,
9] improve on the limitations of the previously mentioned algo-
rithmsbut because of their iterative nature, they are notwell suited
to real-time implementations in highly cluttered environments.
Techniques that use the Monte Carlo based growing data struc-
tures like Rapidly Growing Random Trees [10,11], can find paths in
complex environments but they are proven not to approach opti-
mality [12]. A recently proposed sampling based variant, RRT* [13],
however, does approach optimality but requires infinite iterations.
Search algorithms (e.g A* [14]) have also been employed for global
free path searching. More recently genetic algorithms [15,16] and
fuzzy approaches [17,18] have been proposed for collision free
path planning.

Neural network approaches have also been employed for
efficiently planning the shortest path. In this regard, the supervised
as well as unsupervised learning techniques with neural networks
have been employed to path planning and trajectory planning
problems (e.g. [19–24]), both for manipulators and mobile robots.
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Fig. 1. Neighborhood connections in MPCNN architecture.
Glasius et al. [19] devised amethod based on the Hopfield network
for motion trajectory generation while avoiding obstacles but
it suffers local minima. Li [22] has proposed a neural network
based path planner by fusing an adaptive sensory model with a
visual error correction model. However his method assumes an
error free world, hence it cannot be used in real world sceneries.
A much better approach which utilizes unsupervised learning
paradigms, capable of handling dynamic environments has been
proposed in [23] but it suffers in real world conditions since
it is a computationally complicated solution. A reinforcement
learning based multi layered path planning architecture has been
proposed in [24] but it results in suboptimal trajectories especially
in the learning phase. More recently a cellular neural network [25]
and a reinforcement learning [26] based algorithm have also
been presented, however these also suffer with similar optimality
issues.

Another promising approach is the use of a Pulse Coupled
Neural Network (PCNN) which is a biologically inspired algorithm
capable of emulating the behavior of a cat’s visual cortices [27].
After the earlier work on PCNN done by Johnson [28–30], the
algorithm has been subject to extensive research in various
fields such as image processing and pattern recognition [31]. By
employing the autowave approach in the PCNN, Caulfield and
Kinser [20] proposed a method to solve maze problems. Their
approach finds the shortest path where computational complexity
is related to the path length. However this approach needs a
large number of neurons to find paths in large mazes thereby
making it computationally expensive. Improving on the limitations
of the aforementioned PCNN approach, a modified PCNN (MPCNN)
model was recently introduced by Qu et al. [21] which has been
proven to be more efficient than most planning algorithms. The
modified model requires fewer neurons than the Caulfield and
Kinser model, guaranteeing the shortest path and a solution that
is independent of the complexity of the search space. However,
since the model employs an unconstrained autowave, it searches
the whole space irrespective of where the target is located, hence
this unconstrained search leads to time inefficiency.

In order to facilitate an informed search, we present a novel
path planning approach that employs a directionally constrained
Guided Autowave Pulse Coupled Neural Network (GAPCNN)
model. The model, which works on 2D space representation of
3D environments, uses the position of target neuron to focus
a controlled search in its direction. Also, it employs a variable
threshold unique to each neuron. These modifications enable the
proposed scheme to significantly improve the optimal path query
times, in both static and dynamic settings, as compared to the
MPCNN.
Rest of the paper is organized in the following manner. Sec-
tion 2 covers some related research on MPCNN based path plan-
ning. The proposed GAPCNN model is described in Section 3. Path
planning algorithm using the model is given in Section 4. Section 5
dealswith the comparison ofMPCNNandGAPCNN in terms of their
mathematical model. Performance comparison of GAPCNN with
contemporary algorithms is presented in Section 6 while Section 7
presents a brief overview of the implementation details. In Sec-
tion 8, experimental results are discussed. Finally conclusions are
given in Section 9.

2. MPCNN based path planning

Here we briefly review some fundamental concepts of MPCNN
algorithm for mobile robot path planning. Path planning using
MPCNN utilizes a topologically organized, latterly connected 2D
lattice of neurons over the entire configuration space of the
environment as shown in Fig. 2. Each MPCNN neuron receives two
inputs, one from neighboring neuronswhile the other corresponds
to the configuration space input. All the neurons are designated
as either obstacle or free space, both robot and target are treated
as free space. Each neuron in the space is connected only to
its immediate neighbors (Fig. 1(a)). Obstacle neurons are not
connected to their neighbors as shown in Fig. 1(b).

The neighbors of a particular neuron are said to be in its straight
connected set N s (a-type neurons, as shown in Fig. 1) if their
Euclidean distances from the neuron are 1. Likewise the neighbors
are said to be in the slantwise connected set Nd (b-type neurons,
as shown in Fig. 1) of the neuron if their Euclidean distances are
√
2. The neurons need not be actually spaced a unit distance (or

√
2 in slantwise direction) apart from each other. The neurons

can be placed at greater distances for less cluttered environments,
provided the adherence to straight and slantwise connection rules
is ensured.

A neuron i is connected to any of its immediate neighbor j
through a weightwij as given below:

wij =


1 if j ∈ Ns — a-type neurons
√
2 if j ∈ Nd — b-type neurons.

(1)

Output of a neuron i at time t is represented by Yi(t). Each
neuron is fired only once in its life time.

Yi(t) =

0 for T − ε ≤ t < T
1 for t = T
0 for T < t ≤ T + ε

(2)

where ε could be any amount of time and T = t ifire is the time at
which neuron i fires.
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Fig. 2. The MPCNN model.

Aneuron i fires only if someneuron j in its neighborhoodNi fires
and this sets neuron i as child neuron to fire at some later time. The
neuron j is said to be its temporary parent NP∗

i and its firing time is
denoted as tN

P∗
i . If another neuron in the same neighborhood fires

and if it can make neuron i fire earlier, then it will become the new
temporary parent of i. When a neuron i fires at some time t ifire it

records its current temporary parent as its parent tN
P
i .

Firing of these neurons is governed by their energy U(t) also
known as internal activity. A neuron is activated by its parent
neuron and its internal activity before and at the time of activation
by its parent is zero. At time t > tN

P
i , its internal activity is given

as follows:
dUi(t)
dt

= Fi + CLi for t > tN
P
i

Ui(t) = 0 for t ≤ tN
P
i

(3)

where C is a constant Fi(t) and Li(t) are the linking and feeding
fields given by:

Li(t) = f (YN1 , . . . , YNk , t) =


0 if t < tN

P∗
i

1 otherwise.
(4)

Linking input is the actual input from the environment map
whereas the feeding field is due to the connections with the
neighboring neurons.

Fi(t) = −g(wir1 , . . . , wirk , t)Ui(t). (5)

Here g is a function of time t and connectionweights among the
k neighbors and is given by:

g(wir1 , . . . , wirk , t) =


0 if t < tN

P∗
i

µ(wij) if t > tN
P∗
i

(6)

where µ(wij) is given by:

µ(wij) =
B
wij

=

B if j ∈ Ns
B

√
2

if j ∈ Nd.
(7)

Here B is a positive constant. Depending upon weather the child
is a straight neighbor or a diagonal neighbor of parent neuron, the
internal activity Ui(t) of the neuron increases in accordance with
Eq. (3). Energy of the neuron is continuously compared with the
threshold level. The threshold for ith neuron can be written as:

θi(t) =


θinit for t < tN

P∗
i

θij for tN
P∗
i ≤ t < t ifire

θf for t > t ifire

(8)
where θinit and θf are constants. θf is set to a very large value to
ensure that the neuron may not fire again and θij is given as:

θij =


θs if j ∈ Ns
θd if j ∈ Nd

(9)

where j is the temporary parent of neuron i. θs and θd are positive
constants. These constants determine the threshold level for the
straight and diagonal neurons respectively. A neuron fires when its
internal activity exceeds a threshold level: θs in case of a straight
connected neuron and θd in case of a diagonal connected neuron.
Output of a MPCNN neuron is given by the following relation:

Yi(t) = Step(Ui(t)− θi(t)) =


1 if Ui(t) ≥ θi
0 otherwise. (10)

Aforementioned architecture of a MPCNN neuron can be
visualized as a model in Fig. 2.

To find the shortest path using MPCNN, search proceeds
through the use of a circular autowave. The autowave propagates
through coupling of the neighboring neurons. When the internal
activity of a particular neuron exceeds the threshold level as given
by Eq. (10), it fires. Initially the target neuron’s internal activity is
set greater than the threshold level which is a necessary condition
to initiate the firing process. The firing of a neuron is followed
by coupling process in which neighboring neurons are bonded by
a parent–child relationship. Subsequently the internal activity of
the neighboring neurons increases with time. This firing pattern
propagates outwards in the form of a wave until the robot neuron
is reached. In this process, internal activity of the obstacle neurons
is kept zero, hence avoiding their firing. Path is traced backwards
from robot to target through the parental sequence of neurons.

An analysis of the MPCNN algorithm reveals that it suffers in
two important aspects. Firstly it utilizes an uninformed search be-
havior. To find the shortest path it propagates a wave in all di-
rections, not using any of the available information to perform an
intelligent search. Secondly MPCNN assigns the same threshold
level to all the neurons in the provided map. As we demonstrate
in this paper, gradual decrease in the threshold in the direction
of the possible solution can be utilized to find the shortest path
with better time efficiency. We term the new model as Guided
Autowave PCNN (GAPCNN). GAPCNN utilizes informed search and
threshold constraints by employing mathematical expressions of
least computational complexities; thereby leading to a compu-
tationally efficient solution to the presented problem. Moreover,
firing rate based wavefront expansion ensures its completeness.
GAPCNN outperforms previous methods with the same path plan-
ning results, but with a much greater time efficiency.

3. GAPCNNmodel

The GAPCNN model for a single neuron i is shown in Fig. 3.
The model differs from the MPCNN model in two ways. First the
threshold function of the proposed model is a function of time t
and distance λ from the target while the MPCNN threshold is a
function of time only. The modified threshold has distinct values
over the whole space and it decreases towards the target neuron.
The threshold for ith neuron can be written as:

θi(t, λ) =


θinit for t < tN

P∗
i

θij − λi for tN
P∗
i ≤ t < t ifire

θf for t > t ifire.
(11)

λi is the normalized distance of the ith neuron from the target
neuron given by:

λi = A

1 −

Dtarget

Dmax


. (12)
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Fig. 3. The GAPCNN model.

Here Dtarget is the Euclidean distance from the target neuron, Dmax
is taken as the distance between the two farthest neurons in the
network, and A is a constant.

Second major difference of the proposed model from the
MPCNN model is the actual directional constraining of the au-
towave. This is achieved by employing an anglemodification in the
original differential equation of the internal activity of the neuron.
Modifying Eq. (3), the proposed internal activity Ui(t) of GAPCNN
neuron is given by:

dUi(t)
dt

= Fi + CLi for t ≥ tN
P
i

U(tN
P
i ) = 0.

(13)

This is achieved by modifying the feeding field of the model as
given by the following expression:

Fi(t) = −g(wiN1 , . . . , wiNk , ψ, t)Ui(t). (14)

Here g is a function of time t , connection weights among the k
neighbors and the directional constraint ψ and is given by:

g(wiN1 , . . . , wiNk , ψ, t) =


0 if t < tN

P∗
i

µ(wij)+ ψi if t > tN
P∗
i .

(15)

The directional constraint ψi is given by:

ψi = K(α − βi) (16)

where α is the principle angle of the robot from the target which
is calculated by assuming a coordinate system with the origin at
the target. βi is the angle of the ith neuron from the target. The
angle calculations are illustrated in Fig. 4, the orientation of this
axis is predefined and all angle computations shall be carried out
with reference to this orientation. K is given as:

K = pδ. (17)

Here p is the proportionality constant, δ is the difference in the
firing rate of neurons at time step t and t + 1. A decrease in
firing rate indicates obstruction in front ofwavefront, whichwould
consequently decrease K thereby opening the wavefront. Such a
situation occurs in the presence of a local minima. In this case the
wavefront is gradually opened to evade the local minima. If there
does not exists a path from goal to robot neuron then in such a
case based upon the values of δ, the wavefront is opened until
GAPCNN approaches MPCNN. In the end δ would diminish to zero
thereby indicating that thewavefront cannot continue forward and
Fig. 4. Illustration of the direction constraint.

there does not exists a route from target to robot. This ensures the
completeness of the algorithm i.e. the algorithm reports a path if
present and reports that no path exists in case of failure.

The output Yi(t) of a neuron is given by:

Yi(t) = Step(Ui(t)− θi(t, λ)) =


1 if Ui(t) ≥ θi
0 otherwise. (18)

4. Algorithm for path planning

Path is planned using the guided autowave starting from the
target neuron which fires in the first cycle. From the target neu-
ron there will be a sequence of children of the subsequent neu-
rons in the pathwhich ends at the robot. The directional parameter
ensures that the neurons which have angles more closely aligned
with the fundamental angle of the robot from the target, will fire
earlier than the less aligned ones.

The computation steps are as follows:

(1) Network Initialization: In this step the various parameters of the
system are set. For all neurons, we set θi(0) = θinit and set
Ui(0) = 0 for all i ≠ target , Ui(0) = θinit for i = target ,

(2) Network Iterations: For each neuron i
(a) Calculate Ui(t) according to (13)
(b) Calculate Yi(t) according to (18)
(c) If Yi(t) = 1:

(i) Set θi(t) = θf ,
(ii) Set NP∗

i as NP
i ,

(iii) Calculate ψ(i) according to (16),
(iv) For all j ∈ Ni, ifNP∗

j exists then setminimumofψ(i) as

NP∗

j , reset initial condition Uj(t
NP∗
j ) = 0 upon tempo-

rary neighbor change. If NP∗

j does not exist set i as NP∗

j ,
(v) Calculate λj for all j ∈ Ni according to (12) and θj ac-

cording to (11).
(d) Calculate δ, if δ decreases determine corresponding K .
(e) If Yrobot = 1 stop the execution and return path.

The path points are retrieved by backtracking through the parent
of each neuron starting from the robot.

5. MPCNN vs. GAPCNN

GAPCNN is designed to avoid unnecessary propagation of the
autowave by imparting a directional behavior and also to boost
up the directed neuron’s energy in order to accelerate neuron
firing. GAPCNN inherits basic methodology from MPCNN, hence
it is dependent upon various parameters introduced in MPCNN
model. Optimal values of the parameters B, C, θs, θd and θf can be
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(a) MPCNN. (b) GAPCNN.

Fig. 5. Search space.
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Fig. 6. Closing of autowave face with different values of K .
directly inferred from [21]. Acceptable range for these parameters
are as follows:

0 < θs <
C
B
, 0 < θd <

√
2C
B

and θf >

√
2C
B
.

Here the constant B and C can arbitrarily take any value
provided aforementioned conditions are obeyed. Variation of the
constants leads to change in the internal propagation time of the
auto-wave. Here propagation time decreases as C increases while
decrease in B lowers the propagation time but comparatively to
a lesser extent. More detailed discussion about these parameters
can be found in [21]. It is to be noted that these parameters are
independent of the environment and same parameters are used for
all the experiments reported in this research. Parameters A and K
are introduced in the GAPCNNmodel and are discussed in detail as
follows:

5.1. Wave propagation control

The search space of the original MPCNN and the GAPCNN is
depicted in Fig. 5. In all the subsequent figures the blue region
represents the search space of the algorithms, green shows the
target neuron, red is the robot neuron while yellow represents the
path planned by the scheme. TheMPCNNwave propagates equally
in all directions regardless of the location of the robot while the
GAPCNN wavefront only propagates in a small region around the
target reducing the number of neurons that have fired (blue area).
Two parameters K and A are introduced in the GAPCNN model. K
controls the opening and closing of the face of guided autowave.
Fig. 6 demonstrates the influence of parameter K on the wave
behavior. The face of the autowave opens with lower values of K
and closes as K increases.

The magnitude of K is controlled based on the difference in the
firing rate of neurons at each time step i.e. upon a decrease in the
firing rate in successive iterations, the value of K increases, causing
the wavefront to expand. Thus, whenever the directed wave gets
Table 1
Execution time vs. parameter A.

Value of parameter A Execution time (s)

0.01 1.0
0.5 0.85
1.0 0.71
3.0 0.59
6.0 0.28

stuck against an obstacle, the wavefront expands, allowing the
autowave to go around the obstacle. This guarantees superior
efficiency of GAPCNN over MPCNN even in scenarios where no
relatively straight collision free path exists. Also when the rate of
firing diminishes to zero, this will indicate that there is no route
between the target and the robot thereby ensuring completeness
of the approach.

5.2. Dynamic threshold control
In GAPCNN each neuron of the grid possesses a unique

threshold in accordance to its location whereas in MPCNN each
neuron was associated with the same threshold level. It can be
seen that while the MPCNN (Fig. 7(a)) has a constant threshold for
all the neurons, GAPCNN threshold is dynamic and it significantly
decreases as we approach the neurons in the vicinity of the robot
neuron (Fig. 7(b)).

Dynamic thresholding improves the computational efficiency
by allowing the neurons to fire earlier as compared to MPCNN. On
the other hand it foils the possibility of false firing by providing a
suitable threshold level to all the neurons. In the proposed model
parameter A impacts the propagation speed of the autowave.
Larger values in A decrease the wave propagation time as given in
Table 1.

6. Performance comparison

To validate the effectiveness of the proposed algorithm,
GAPCNN is compared with MPCNN. Additionally performance



U.A. Syed et al. / Robotics and Autonomous Systems 62 (2014) 474–486 479
(a) MPCNN. (b) GAPCNN.

Fig. 7. Threshold for grid of MPCNN and GAPCNN.
(a) MPCNN. (b) GAPCNN.

Fig. 8. Path planning in the presence of a local minima.
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Fig. 9. Query times of MPCNN and GAPCNN.

comparison with A* search algorithm under identical conditions
has also been conducted and presented in this section. Comparison
results show that the proposed research yields much better results
as compared to A* search.

6.1. Comparison with MPCNN

In order to gauge the performance improvements of GAPCNN
in comparison with MPCNN, path query was performed in various
situations. For the case of local minima (Fig. 8(a) and (b)), the
proposed scheme successfully finds the path while still achieving
a faster execution than the MPCNN. Note that the search space
is almost halved. Graph shown in Fig. 9 presents the query times
of the two algorithms for 200 test environments with randomly
generated obstacle placements. The mean execution time of
MPCNN for the results given in Fig. 9 is 11.82 ms whereas that of
GAPCNN is 3.57 ms. The mean time improvement here is 8.25 ms
which corresponds to a 70% time improvement. From Fig. 9 it is
clear that in all of the path queries, GAPCNN performs significantly
better than MPCNN in terms of time taken to determine the
optimal path.

6.2. Comparison with A* search
A* [32] is a search algorithm which has been extensively

employed to the problems of path planning and graph traversals. It
determines the pathwith the smallest cost (represented by f (x)) in
a graph or a network based upon the length of path already covered
(given by g(x))and a admissible heuristics (h(x)) representing an
approximation of the path to be covered. Cost of each path is given
as follows:

f (x) = g(x)+ wh(x)

where w represents the weight function. A* works in as similar
manner as that of GAPCNN i.e. first exploration is carried out based
upon a cost function and then shortest path is extracted through
parent–child relations. Comparison of the proposed algorithm
with A* search has shown that GAPCNN is more efficient than
A* in terms of time for the simulated scenarios. Fig. 10 shows a
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Fig. 10. Time comparison of GAPCNN with A* search.
Fig. 11. Path comparison of GAPCNN with A* search.
comparison of the path query time for GAPCNN (shown in red) and
A* (shown in yellow) which demonstrates that GAPCNN is much
more efficient in terms of time as compared to A*. In all the cases
cumulative cost of the resulting paths was equal, however it was
observed that inmost of the cases the paths calculated by GAPCNN
were different from that of the path determined by A* as shown in
Fig. 11(a) and (b). Implementation of A* was taken from [33].

7. System overview

The holistic overview of the GAPCNN implementation is given
in Fig. 12. The implementation can be considered as a unison of
three modules namely vision module, path planning module and
lastly robot controlmodule to follow the path provided by the path
planner.

7.1. Vision module

This module deals with the objects location and pose identifi-
cation, as shown in Fig. 12. Microsoft Kinect is used as the imaging
source. This module takes as an input a RGB image and based upon
this data identifies robot configuration (xr , yr , θr), static obstacle
location (xsi , y
s
i ) and dynamic obstacle locations (xdi , y

d
i ). The obsta-

cle locations are utilized in developing workspace of the environ-
ment. Since GAPCNN takes robot as a point robot and determines
the optimal path, to avoid collisions with the obstacles it is nec-
essary to increase the obstacles in proportion with the robot size.
Hence we need to develop the configuration space of the robot.

7.2. Configuration space

The space of all possible configurations of a robot is called the
configuration space [34]. Consider a robot R navigating in a 2-D
Euclidean space, where the set of all possible configurations of the
robot are represented by the set Q = {q1, q2, . . . , qn} and the set
of obstacles is represented by O = {O1,O2, . . . ,On}. Then the con-
figuration space can be modeled as a continuous mapping repre-
sented by τ : [0, 1] → Q , where τ(0) = qinit and τ(1) = qgoal. The
path planning problem is to find a path in the configuration space
such that no configuration of the robot collides with the obstacles.

Since the Robot can be of any arbitrary shape in the workspace,
the profile of the robot needs also to be considered in the
configuration space. This is done by taking theMinkowski Sum [35]
of the profile of the robot R with every obstacle Oi.
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Fig. 12. Overview of the complete system.

Since the shape of the robot has been accounted for, the robot
can now be considered as a point robot in the configuration
space. In order to reduce the computational load, here the robot
is assumed to have a circular shape. This removes the need to
incorporate different robot orientations in the Minkowski sum.
However this results in a minor degradation in the accuracy of the
proposed systemwhich is acceptable for the purpose of navigation
in large indoor environments.

7.3. Sparse environment map

To decrease the computational load as well as to increase the
path dynamics, the sparse representation of the configuration
space is developed. Sparsing enables the path planner to result in a
pathwhichmakes easier for the robot dynamics to follow the path.
In our casewe have split our configuration space to kernels of 3×3
size and examined all the kernels. If there exists an obstacle cell in
the kernel then the corresponding cell in the sparse map shall be
an obstacle cell otherwise its a free cell.

7.4. GAPCNN path planner and path following control

Using the robot location, the target location and the sparsed
map, the GAPCNN is used to plan the path. GAPCNN requires
a complete knowledge of the environment. The vision modules
provides a configuration map of the environment, along with the
robot location to the path planner and it plans a path with a
predefined target location (in case of static targets). The path
planner provides a list of the way-points to be followed by the
robot.

Robot control mechanism module enables the robot to follow
the way-points returned by the path planner. Based upon the
current robot configuration and next location to be visited by
the robot, the drive parameters i.e. robot speed and turnrate are
determined. The robot is then transmitted the new speed and
turnrate using Player/Stage [36]. Until the robot reaches the next
way-point, the robot configuration is continuously determined to
generate new control parameters. This process is repeated until the
robot reaches the target location.
8. Results

Extensive testing of the algorithm has demonstrated its
suitability for path planning in various real world scenarios. Here
we present some of the results showing to prove the effectiveness
of the proposedmodifications in the light of obstacle avoidance,we
shall present here the path planning using GAPCNN in both static
as well as dynamic environments.

8.0.1. Dynamic environments

To ascertain the performance of the proposed method in dy-
namic world environments, simulations were carried out using
Player/Stage. In Figs. 14–17 the bottom figures show the path
planned for the robot by GAPCNN at the present time step given
the current obstacle proximity and is drawn in green color. Black
shows the obstacles whereas the robot is drawn in red. The cor-
responding figures at the top present the trajectories actually fol-
lowed by the dynamic obstacles and the robot in the Player/Stage
simulation until that time step. This figure includes replanned
robot trajectory computed by GAPCNN to avoid the dynamic ob-
stacle present in the vicinity of the robot. In Player/Stage represen-
tation there are two dynamic obstacles, one with a blue trajectory
(obstacle ‘A’) and the other with a green trajectory (obstacle ‘B’)
while the red trajectory shows the movement of the robot as de-
termined by the GAPCNN-based intelligent path planning scheme.
Table 2 shows velocities of robots and obstacles used for various
experiments.

8.1. Simulation results

To verify the performance of aforementioned modifications
simulation results were carried out. For dynamic environments,
Player/Stage is used to verify the results.

8.1.1. Static environments
2D SLAMmaps generated in different real world environments

were used to test the performance of proposed algorithm. Fig. 13(a)
and (b) present the paths planned in two different environments
by GAPCNN. It can be observed in these figures that GAPCNN does
not search the complete environment but follows a directed search
pattern.

Fig. 14 presents a test case in which obstacle ‘A’ is on a head-on
collision coursewith the path planning robot. A straight path exists
from robot to target but its obstructed by this obstacle. Fig. 14(a)
shows initial path planned to avoid head on collision with obstacle
‘A’. Curvilinear path taken by robot ‘R’ in Fig. 14(b) and (c) shows
the avoidance behavior of the proposed method. Next the robot
is intercepted by obstacle ‘B’ and it evades collision by rerouting
the path to the left as shown in Fig. 14(d). Fig. 14(e) shows the
trajectories of robot and the obstacles.

Fig. 15 simulates a similar situationwith an additional static ob-
stacle. Fig. 15(a) and (b) show avoidance of possible collision with
obstacle ‘A’. Fig. 15(c) presents how collision with static obstacle is
avoided. In Fig. 15(d), the robot determines that the optimal path
is in front of obstacle ‘B’, and by moving in a curvilinear pattern it
avoids obstacle ‘B’.

Fig. 16 shows that the GAPCNNworks perfectly and is indepen-
dent of the shape of the obstacles. In this case obstacles are mod-
eled as circular instead of square shaped. The overall trajectory in
Fig. 16(e) shows that there is a significant difference in the path
taken by robot ‘R’ as compared to previous case. The path is clearly
modified by the GAPCNN to avoid the circular shaped obstacles.

Fig. 17 shows another generally encounter path planning
problem in which the target is dynamic. Here the target is moving
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Fig. 13. Path planning in a 2D SLAM environment.
Table 2
Dynamic test cases.

Serial
no.

Complexity Obstacle A velocity
(m/s)

Obstacle B velocity
(m/s)

GAPCNN robot (m/s)

1 Two dynamic obstacles, obstacles modeled as squared shape 4.5 5 6.5
2 Two dynamic and one static obstacle, obstacles modeled as squared shape 4.5 2 7
3 Two dynamic obstacles, obstacles modeled as circular shape 3.5 1.5 6
4 Sinusoidal moving target intelligent pursuer – 4 8
A: Dynamic Obstacle B: Dynamic Obstacle Dynamic Obstacle A (stage) Dynamic Obstacle B (stage)T: Target R: Robot

Fig. 14. Dynamic environment with two straight moving obstacles.
A: Dynamic Obstacle B: Dynamic Obstacle Dynamic Obstacle A (stage) Dynamic Obstacle B (stage)T: Target R: Robot

Fig. 15. Dynamic environment with two straight moving and one static obstacles.



U.A. Syed et al. / Robotics and Autonomous Systems 62 (2014) 474–486 483
A: Dynamic Obstacle B: Dynamic Obstacle Dynamic Obstacle A (stage) Dynamic Obstacle B (stage)T: Target R: Robot

Fig. 16. Path planning with circularly modeled dynamic obstacles.
Fig. 17. Pursuit evasion with target moving in a sinusoidal manner.
Fig. 18. Experimental results of GAPCNN path planning in static environment.
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Fig. 19. Experimental comparison of paths generated by GAPCNN.
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Fig. 20. Experimental results of GAPCNN path planning in dynamic environment.
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Fig. 21. Experimental evaluation of GAPCNN.
in a sinusoidal manner. Robot (pursuer) moves towards right as
long as the target is moving right as shown in Fig. 17(a)–(c)
and drastically readjusts its direction towards left as target start
moving in that direction (Fig. 17(d)). Fig. 17(e) shows the pursuer
following the target until an intercept is achieved.

8.2. Experimental results

In order to validate the results of the path planner, experiments
were conducted using a P3AT mobile robot. An overhanging
camera (Microsoft Kinect)was used as an image acquisition source.
Using the procedure specified in Section 7, robot localization
and navigation was made possible. To verify the effectiveness of
the proposed modifications, a large number of experiments were
conducted both in static as well as dynamic environments under
identical conditions, a small subset of the results is presented
in Table 3 and Figs. 18–20. In case of static as well as dynamic
environments, the planner re-plans automatically at a rate of 5 Hz.
This is to compensate for the inherent uncertainties in the robot
motion in addition to the re-planning needed to ensure dynamic
obstacle avoidance. Each time re-planning is carried out, state of
the robot is updated and vision system acts as a feedback sensor.
8.2.1. Static environment
In case of the static experiment we used three static obsta-

cles. The path followed by the robot in the three experiments con-
ducted under identical conditions is shown in Fig. 19 while the
path planned by GAPCNN at different instants while approaching
the target location are shown in Fig. 18. A quick comparison of the
paths taken by the robot during the experiments shows that its
behavior is very close to the simulated behavior under identical
conditions. The slight deviation from the simulation is due the
stochastic nature of real robot dynamics.

8.2.2. Dynamic environment
The real effectiveness of the planner is marked by its perfor-

mance in the dynamic environment. In this experiment three static
obstacles and one dynamic obstacle, which intercepted the robot
path, was used. In Fig. 20 ‘‘R’’ represents the robot, ‘‘D’’ is the dy-
namic robotwhile target is denoted by ‘‘T’’. The initial path planned
by the GAPCNN planner is shown in Fig. 20(a). Until the time in-
stant at which the robot is at the location shown in Fig. 21(a), the
path planned by the planner is not intercepted by the dynamic ob-
stacle (Fig. 20(b)). In the next time step (Fig. 21(b)) the planner
shifts its optimal path to the top of the dynamic obstacle since the
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Table 3
Path planning experiments.

Exp. No. Complexity Robot speed (m/s) Obstacle speed (m/s) Robot turnrate (degrees)

1 Three static obstacles 0.2 – 15
2 Three static and one dynamic obstacle 0.3 0.1 25
previously generated path becomes blocked by the dynamic obsta-
cle (Fig. 20(c)). However when robot reaches the location as given
in Fig. 21(c), the dynamic obstacles moves away, therefore the
planned path shift downwards as shown in Fig. 20(d). In Fig. 21(d)
and (e), the paths planned by the planner are largely straight to
the goal but the robot takes a curvilinear trajectory because of its
dynamics. The complete trajectory taken by the robot to its desti-
nation is shown in Fig. 21(f).

The repeatability in the paths taken by the robot in these
experiments validates our approach. Lack of smoothness in the
experimental curves as compared to that of simulation curve
is largely because of uncertainty involved in the robot location
estimation by the vision system. Also the deviation of the
experimental curves from that of the simulation is that of the
computational and communication overheads.

9. Conclusion

A novel approach based on a modified PCNN is presented
for real time path planning and obstacle avoidance of mobile
robots. Guided and adaptive behavior of the wave has resulted in
significant improvement in path query time. Time efficiency of the
algorithm proves that it can be used for path planning of static
as well as dynamic environments. Simulation and experimental
results have shown that the GAPCNN has a significant time
improvement from that of the MPCNN while retaining all of its
capabilities. It is important to note that the parameters used in the
GAPCNN model are independent of the configuration space and a
property of a neuron. These parameters shall work irrespective of
the environment in which path is being planned.

Research is being carried out to extend the algorithm to include
environments with uncertain robot, target and barrier locations.
In addition to this dynamics constraints shall be introduced to
the detected paths, thereby facilitating the motion of mobile
machine.
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