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Abstract

In this paper, we explore the capabilities of state-of-the-art large language models (LLMs) such as
GPT-4, GPT-40, Claude 3.5 Sonnet, Claude 3 Opus, Gemini 1.5 Pro, Llama 3, and Llama 3.1 in solving
some selected undergraduate-level transportation engineering problems. We introduce TransportBench,
a benchmark dataset that includes a sample of transportation engineering problems on a wide range of
subjects in the context of planning, design, management, and control of transportation systems. This
dataset is used by human experts to evaluate the capabilities of various commercial and open-sourced
LLMs, especially their accuracy, consistency, and reasoning behaviors, in solving transportation engi-
neering problems. Our comprehensive analysis uncovers the unique strengths and limitations of each
LLM, e.g. our analysis shows the impressive accuracy and some unexpected inconsistent behaviors of
Claude 3.5 Sonnet in solving TransportBench problems. Our study marks a thrilling first step toward
harnessing artificial general intelligence for complex transportation challenges.
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1. Introduction

In recent years, the advent of artificial intelligence has heralded a new era of computational tech-
nology, fundamentally reshaping how we approach problem-solving across diverse domains. Among
these, large language models (LLMs) stand out for their sophisticated ability to understand and generate
human-like text, offering unprecedented opportunities for innovation across various domains including
coding (Nijkamp et al., 2022; Nam et al., 2024; Xu et al., 2022; Chew et al., 2023; MacNeil et al., 2022),
reasoning (Wei et al., 2022b; Huang and Chang, 2022; Zhou et al., 2022; Sun et al., 2023; Havrilla et al.,
2024), planning (Valmeekam et al., 2022, 2024; Zhao et al., 2024; Song et al., 2023; Dagan et al., 2023),
mathematics (Imani et al., 2023; Azerbayev et al., 2023; Frieder et al., 2024; Zhang et al., 2024a; He-
Yueya et al., 2023), and science (Wang et al., 2023; Birhane et al., 2023; Ouyang et al., 2023; Yeadon and
Hardy, 2024; Chen and Deng, 2023). The scientific community, as well as the general public, have been
wondering how soon, if not already, LLMs will be capable of solving complex problems that involve not
only general common knowledge, but also advanced, domain-specific terminologies and analytical skills.
The educators and researchers are also particularly intrigued by (i) how the advancement of LL.Ms will
impact the future of research, education, and workforce development, and (ii) how the current practice
should be adapted or tailored to best accommodate and take full advantage of the LLMs’ capabilities.
To answer these questions, the first step is to keep track of and understand the development trends of
LLMs with respect to the respective fields of interest, and to identify ways to help LLMs best achieve
their positive potential for societal impacts.

Transportation systems engineering is a critical interdisciplinary subfield of civil engineering, fo-
cusing on developing principles for the planning, design, operations, and management of all modes
of transportation for people and goods (Cascetta, 2009; Fricker and Whitford, 2004). It encompasses
various topics such as transportation economics, driver and vehicle characteristics, guideway geometric
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design, traffic flow and control, planning and demand modeling, utility and modal split, network analysis,
and public transit systems (Daganzo and Ouyang, 2019), and is currently undergoing rapid technology-
driven revolutions (such as autonomy, connectivity, electrification, and shared economy). The problems
in this field combine mathematical foundation with strong engineering, social, and economic principles,
making this field particularly ripe for technological interventions with LLMs, and at the same time, an
ideal benchmark context for assessing the reasoning capabilities of LLMs.

With such a motivation, our paper studies how state-of-the-art LLMs such as GPT-4 (Achiam et al.,
2023), GPT-40 (OpenAl, 2024), Claude 3.5 Sonnet (Anthropic, 2024b), Claude 3 Opus (Anthropic,
2024a), Gemini 1.5 Pro (Team et al., 2023, 2024), Llama 3 (AI@Meta, 2024a), and Llama 3.1 (AI@Meta,
2024b) can be leveraged to tackle undergraduate-level transportation engineering problems, potentially
transforming the landscape of this vital engineering discipline. Understanding such capabilities of LLMs
could signify a substantial leap towards a likely and exciting future of transportation engineering in
which artificial general intelligence is seamlessly equipped with specialized domain-specific human ex-
pertise to enhance productivity and creativity of this engineering field. Our paper first introduces Trans-
portBench, a benchmark dataset specifically designed to encapsulate the essential elements of transporta-
tion engineering. Our TransportBench dataset is designed to cover a wide range of subjects, form the
foundation of our investigation, and enable a structured evaluation of how various LLMs perform in
a domain traditionally dominated by human expertise. TransportBench captures the complexities and
nuances of transportation engineering problems, providing a rigorous testing ground for assessing the
problem-solving abilities of various commercially available and open-sourced LL.Ms. We present eval-
uations conducted by human experts to evaluate the outputs of these LLM models, focusing on their
accuracy and consistency. These evaluations are critical, as they provide insights not only into the ef-
fectiveness of each model but also into their potential to integrate with existing engineering practices.
Our study also identifies the unique strengths and limitations of each LLM, e.g. our analysis shows both
the impressive overall accuracy and some unexpected inconsistent behaviors of Claude 3.5 Sonnet when
tested on TransportBench. Our contributions can be summarized as follows.

* We introduce an open-source new natural-language dataset called TransportBench, designed to
test the capabilities of LLLMs in solving undergraduate transportation system problems.

* We evaluate the accuracy of GPT-4, GPT-40, Claude 3 Opus, Claude 3.5 Sonnet, Gemini 1.5 Pro,
Llama 3, and Llama 3.1 on TransportBench, conducted by human experts. Our analysis shows
that leading LLMs can achieve promising accuracy on TransportBench, and Claude 3.5 Sonnet
achieves the highest accuracy on TransportBench among all the LLMs.

» We further evaluate the consistency of these LLMs on TransportBench. Interestingly, we observe
that Claude 3.5 Sonnet and Claude 3 Opus give less consistent answers when asked to double
check their own solutions — this suggests a lack of deep conceptual understanding. In contrast,
GPT-4 and GPT-40 give the most consistent responses in such a setting.

* We carefully examine the reasoning behaviors of LLMs on TransportBench by twisting some
problems from TransportBench. This provides the first study of LLM reasoning in the context of
solving basic transportation system problems.

Our study marks a significant step toward harnessing LLMs in the realm of civil engineering. In-
spired by the capabilities of LLMs in transportation engineering, it is exciting to envision a promising
future where transportation systems are dynamically managed, with Al predicting and mitigating traffic
congestion, optimizing maintenance schedules, and even designing next-generation infrastructure with
unparalleled efficiency. It is our hope that our exploration into the intersection of LLMs and transporta-
tion system engineering will set the stage for further research and development, potentially revolutioniz-
ing the way we design, build, and maintain our transportation systems in the future.
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Table 1: Summary of the TransportBench dataset. We report the number of True or False problems, the number
of general Q&A problems, and the total number of problems under each topic.

Topic #of T or F Prob. # of General Q&A Prob. # of Total Prob.
Facts 14 8 22
Transportation economics 0 5 5
Driver characteristics 2 3 5
Vehicle motion 7 4 11
Geometry design 7 3 10
Traffic flow/control 8 7 15
Transportation planning 4 4 8
Utility and modal split 4 2 6
Transportation networks 0 3 3
Public transit systems 27 28 55
Total 73 68 140

Related Work: The relationship between LLMs and transportation engineering only emerged in
the past year or so, but have been discussed in many exploratory papers. The relevance of LLMs in the
realm of Intelligent Transportation Systems (ITS) has been discussed in Shoaib et al. (2023), empha-
sizing their integral role in advancing transportation intelligence, optimizing traffic management, and
designing smart cities. More detailed study on using LLMs for traffic management can be found in
Zhang et al. (2024b). Discussions on potential applications of LLMs in other ITS problems such as
traffic flow prediction, vehicle detection, road condition monitoring, traffic sign recognition, and au-
tonomous vehicles can be found in Khalil et al. (2024). The potential of leveraging (and finetuning)
ChatGPT in smarter traffic safety decision-making and crash narrative analysis has been discussed in
Zheng et al. (2023b,a); Mumtarin et al. (2023). Specifically, TrafficSafetyGPT, finetuned from Llama2
on traffic safety data, is one of the earliest efforts in finetuning LLLMs for transportation engineering.
There is also a body of literature on using LLLMs for mobility analysis and forecasting (Zhang et al.,
2024c). The potential use of LLMs in interpretation and reasoning tasks related to self-driving has been
studied in Cui et al. (2024). Despite these promising developments on specific topics, there still lacks
a comprehensive benchmark study on the capabilities of LLMs in solving basic transportation system
problems. Our work complements the existing papers by providing such a benchmark study. We conduct
a broader and more thorough evaluation of the strengths/weaknesses of leading LLLMs such as GPT-4,
GPT-40, Claude 3.5 Sonnet, Claude 3 Opus, Gemini 1.5 Pro, Llama 3, and Llama 3.1 in the context of
transportation engineering.

2. The TransportBench Dataset

We first create a collection of 140 undergraduate problems that span a broad spectrum of topics in-
cluding transportation economics, driver characteristics, vehicle motion, road geometry design, traffic
flow/control, transportation planning, utility/modal split, transportation networks, and public transit sys-
tems. TransportBench consists of both the true or false problems and the general Q&A problems. We
summarize the statistics of our TransportBench dataset for each topic in Table 1.

Human expertise in data creation. All the problems in TransportBench are selected by the sixth author
of this paper based on two of his courses at the University of Illinois: a junior-level introductory course
CEE 310 - Transportation Engineering (taught 14 times) and a senior-level focused course CEE 418 -
Public Transportation Systems (taught 11 times). Those for the first nine topics in Table 1 are twisted
from CEE 310, while those for the last topic “public transit systems" are from CEE 418. Some of the

3



CEE 418 problems are twisted from a co-authored textbook (Daganzo and Ouyang, 2019). Any figure(s)
in an original problem are replaced by language descriptions. Together, these problems capture many
key areas of current transportation systems engineering, and provide a reasonable benchmark test for
LLMs. The solutions to most TransportBench problems are prepared by the second author.

Data format. We collect each problem from original documents in PDF files and presentation slides. We
manually transfer these problems into LaTeX format. All the problems are carefully verified by human
annotators to ensure that LaTeX documents can be compiled without any syntax errors. In addition,
we also provide a detailed step-by-step solution for each problem in LaTeX. For ease of evaluations,
we have also provided JSON-formatted files for TransportBench. All the files for our TransportBench
dataset are available at https://agidengineering.github.io/TransportBench/.

3. Evaluating Accuracy of Leading LL.Ms on TransportBench

Now we are ready to evaluate the accuracy of leading LLMs such as GPT-4, GPT-40, Claude 3 Opus,
Claude 3.5 Sonnet, Gemini 1.5 Pro, Llama 3 (70B) and Llama 3.1 (405B) on TransportBench. In this
section, we consider a zero-shot prompting strategy (i.e., directly inputting the question) and examine the
web-version LLM responses through human expert annotation (our analysis does not require using APIs
or local models). The inputs to the web-version LLMs are just the original problem descriptions from
TransportBench. The zero-shot setting is fundamentally important (Kojima et al., 2022) and serves as a
meaningful starting point for our analysis. We first present two examples (i.e. one general Q&A problem
and one True or False problem) to illustrate the zero-shot setting and showcase the capabilities of LLMs
in solving transportation problems. First, consider the following transportation economics problem.

Zero-Shot Setting (General Q&A Problem): Problem 2.5 from TransportBench

Input: Suppose you have one widget plant at the center of a sufficiently large country of size S
mi?, where population is uniformly distributed with a density of § people/mi?. The production
cost is $C per unit, and the selling price is $P per unit, and it can sell D widgets per person
per year everywhere in the country. Transportation costs include a fixed cost of F' per unit and
a variable cost of $ f per widget-mile. Suppose P > C + F'. Determine the shape, size and the
total demand of your market.

GPT-4: To solve this problem, we need to determine the region around the widget plant where
it is profitable to sell widgets ... Since P > C' + F', we can determine the break-even distance
d where the selling price equals the total cost: P =C + F + fd — d= #- -+ The

2 2
size (area) of the market is 7 (#) . The total market demand is ¢ - 7 (#) -D

Claude 3.5 Sonnet: Let’s approach this problem ...Let P be the revenue, r is the radius of the
circular market area, and the total cost = C' 4+ F' 4 fr . For the market boundary, revenue equals
total cost implies r = (P — C — F')/f. Therefore, the market is a circular area with radius

2
r=(P—C — F)/f, and the market demand is 7 (#) x 0 x D widgets per year.

Gemini 1.5 Pro: Here’s how we can determine the shape, size, and total demand of the market
under the given conditions: ... Since each person buys D widgets per year, the total demand is:
Total Demand = D x Population = Dér[(P — C — F)/f]>.

For illustrations, the solutions of GPT-4, Claude 3.5 Sonnet, and Gemini 1.5 Pro are provided for the
above question. All three LLMs have clearly identified the “uniformly distributed population" setting
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in the problem statement and subsequently assumes the use of Euclidean metric. Furthermore, all the
LLMs correctly model the profitability of the plant and come up the correct size of the market for the
widget plant. For the second example, we consider a True or False problem on geometry design.

Zero-Shot Setting (True or False Problem): Problem 5.1 from TransportBench

Input: In horizontal curve design, for a given design speed, the larger the road radius, the larger
the rate of super-elevation. True or False?

GPT-4: False. In horizontal curve design, the rate of super-elevation actually decreases as the
radius of the curve increases for a given design speed. The rate of super-elevation is used to
counteract the lateral acceleration experienced by a vehicle navigating a curve. A larger radius
means the curve is less sharp, and therefore, the lateral forces are lower, requiring less super-
elevation to maintain vehicle stability and comfort.

Claude 3.5 Sonnet: False. In horizontal curve design, for a given design speed, the relation-
ship between road radius and superelevation rate is actually inverse, not directly proportional.
Here’s a brief explanation: 1. As the radius of a horizontal curve increases, the centrifugal force
acting on a vehicle decreases. This means less superelevation is needed to counteract the force.
2. Conversely, tighter curves (smaller radii) require more superelevation to help vehicles safely
navigate the turn at the design speed. 3. For a given design speed, as you increase the radius of
the curve, you can decrease the rate of superelevation while still maintaining safety and comfort
for drivers. This relationship is fundamental to highway geometric design and is typically repre-
sented in design charts or tables that show the interplay between curve radius, design speed, and
superelevation rate.

Gemini 1.5 Pro: False. In horizontal curve design, the relationship between road radius and
superelevation rate is inverse. This means: Larger radius: Requires a smaller rate of supereleva-
tion. This is because the centrifugal force experienced by a vehicle traveling at a given speed is
lower on a curve with a larger radius. Smaller radius: Requires a larger rate of superelevation to
counteract the increased centrifugal force. The design goal is to provide a comfortable and safe
driving experience by balancing the centrifugal force with the inward tilt of the road surface.

In the above example, all the LLMs have accurately identified the correct relationship between the
road radius, super-elevation, and design speed, and come up the correct conclusion that the original
statement is false. For concreteness, we listed some detailed reasoning provided by LLMs. We can
see that the reasoning from LLMs for this specific question is quite plausible and supports the correct
conclusion well.

Following the above zero-shot setting, we present a comprehensive evaluation of GPT-4, GPT-4o,
Claude 3.5 Sonnet, Claude 3 Opus, Gemini 1.5 Pro, Llama 3, and Llama 3.1 on TransportBench. After
receiving the LLM responses, we check the correctness of the LLM answers via human annotation.
For all the problems, we also check the reasoning provided by LLMs. Our main evaluation metric
is Accuracy (ACC), defined as the proportion of instances where the LLMs correctly solve the given
problems. The ACC of GPT-4, GPT-40, Claude 3 Opus, Claude 3.5 Sonnet, Gemini 1.5 Pro, Llama 3
(70B), and Llama 3.1 (405B) on the TransportBench dataset is reported in Table 2. For simplicity, we
only conduct our analysis on one trial per problem!, and hence there is some inherent randomness in the
ACC obtained. Nevertheless, the results in Table 2 show that leading LL.Ms such as Claude 3.5 Sonnet,

'When we increase the number of trials per problem, the resultant trend is quite similar. See Table 4 in the next section.
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Table 2: Accuracy (ACC) of GPT-4, GPT-40, Claude 3 Opus, Gemini 1.5 Pro, Llama 3 and Llama 3.1 on Trans-

portBench. The best results for each topic are highlighted in bold.

Topics

| GPT4

GPT-40

| Claude 3 Opus | Claude 3.5 Sonnet | Gemini 1.5 Pro | Llama 3 (70B) | Llama 3.1 (405B)

Facts

Transportation economics
Driver characteristics
Vehicle motion

Geometry design

Traffic flow/control
Transportation planning
Utility and modal split
Transportation networks
Transit systems

72.7% (16/22)
20.0% (1/5)
100.0% (5/5)
63.6% (7/11)
60.0% (6/10)
40.0% (6/15)
62.5% (5/8)
66.7% (4/6)
33.3% (1/3)
47.3% (26/55)

72.7% (16/22)
40.0% (2/5)
100.0% (5/5)
81.8% (9/11)
70.0% (7/10)
46.7% (7/15)
50.0% (4/8)
83.3% (5/6)
33.3% (1/3)
50.9% (28/55)

68.2% (15/22)
40.0% (2/5)
100.0% (5/5)
72.7% (8/11)
70.0% (7/10)
33.3% (5/15)
50.0% (4/8)
66.7% (4/6)
66.7% (2/3)
56.4% (31/55)

81.8% (18/22)
40.0% (2/5)
100.0% (5/5)

90.9% (10/11)
70.0% (7/10)
53.3% (8/15)
62.5% (5/8)
50.0% (3/6)
100.0% (3/3)
60% (33/55)

81.8% (18/22)
40.0% (2/5)
80.0% (4/5)
81.8% (9/11)
70.0% (7/10)
53.3% (8/15)
100.0% (8/8)
50.0% (3/6)
100.0% (3/3)

49.1% (27/55)

68.2% (15/22)
20.0% (1/5)
40.0% (2/5)
36.4% (4/11)
60.0% (6/10)
40.0% (6/15)
50.0% (4/8)
50.0% (3/6)
33.3% (1/3)

30.9% (17/55)

68.2% (15/22)
40.0% (2/5)
100.0% (5/5)
63.6% (7/11)
60.0% (6/10)
46.7% (1/15)
50.0% (4/8)
66.7% (4/6)
100.0% (3/3)
43.6% (24/55)

Overall | 55.0% (77/140) | 60.0% (84/140) | 59.3% (83/140) | 67.1% (94/140) | 63.6% (89/140) | 42.1% (59/140) | 55.0% (77/140)

Gemini 1.5 Pro, GPT-40, Claude 3 Opus, and GPT-4 have shown promising accuracy on TransportBench.
A few key observations are made below.

* Claude 3.5 Sonnet achieves the best ACC for most topics and the entire TransportBench
dataset. This indicates that in the zero-shot setting, Claude 3.5 Sonnet can be considered as
the state-of-the-art LLM in solving problems from TransportBench, demonstrating its superior
accuracy in both factual and analytical problem-solving tasks compared to other models. Its per-
formance suggests advanced capabilities in handling complex transportation-related queries.

* Gemini 1.5 Pro, GPT-40, and Claude 3 Opus all demonstrate competitive performance. De-
spite the fact that Gemini 1.5 Pro, GPT-40, and Claude 3 Opus fall short of Claude 3.5 Sonnet in
terms of overall accuracy, all these LLMs have achieved reasonably good accuracy on Transport-
Bench. The performance gap between Claude 3.5 Sonnet and Gemini 1.5 Pro is actually not that
significant. GPT-40 and Claude 3 Opus can also roughly achieve 60% ACC. We can see that GPT-
40 has surpassed GPT-4 on TransportBench. This is consistent with the known fact that GPT-40
has outperformed GPT-4 on many existing benchmarks across various domains.

* The open-source model Llama 3.1 has reached the level of the commercial model GPT-4.
There is a huge gap between the ACC achieved by Llama 3 and other LLMs. This may be due to
its smaller model size compared to the commercial LLMs. However, as Meta Al further increases
the model size from 70B to 405B, Llama 3.1 has finally reached the ACC level of GPT-4 on
TransportBench. Since Llama 3.1 is open-source, it provides valuable insights and a starting
point for further research and development. For example, one can potentially improve Llama 3.1
through instruction finetuning and domain adaption (Hu et al., 2022; Wei et al., 2022a).

Overall, leading LLMs have shown promise in solving basic transportation system problems. Next,
we dig into the performance of these LLLMs by examining ACC for different problem topics and types.

CEE 310 vs. CEE 418.. 1t is interesting to investigate the impact of problem difficulty levels. Here
we study the performance gap of the evaluated LLMs on CEE 418 (the last topic on transit systems)
and CEE 310 (all other topics). CEE 310 is an introductory course that covers a very broad range of
topics in transportation engineering, while CEE 418 is considered as a more advanced and more focused
follow-up course (whose prerequisite is CEE 310). The overall ACC for CEE 310 and CEE 418 can be
found in Table 3. As expected, all the LLMs have lower ACC on CEE 418, and higher ACC on CEE
310. This confirms that CEE 418 is more challenging than CEE 310 for LLMs. We notice that an LLM
that does better on CEE 310 does not necessarily attains higher ACC on CEE 418. For example, GPT-40
perform better than Claude 3 Opus on CEE 310 problems. However, on CEE 418, Claude 3 Opus is
above GPT-40 in terms of ACC. Interestingly, Gemini 1.5 Pro is doing extremely well on CEE 310 but
has a huge performance drop (23.5% ACC) on CEE 418. In addition, GPT-4, Llama 3.1, and Llama 3
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Table 3: Accuracy (ACC) of LLMs on CEE 310 vs. CEE 418 vs. True or False problems vs. General Q&A. The
best results for each metric are highlighted in bold.

LLMs

CEE 310

CEE 418

‘ True or False

| General Q&A

GPT-4
GPT-40
Claude 3 Opus

Claude 3.5 Sonnet

Gemini 1.5 Pro
Llama 3 (70B)

60.0% (51/85)
65.9% (56/85)
61.2% (52/85)
71.8% (61/85)
72.9% (62/85)
49.4% (42/85)

47.3% (26/55)
50.9% (28/55)
56.4% (31/55)
60.0% (33/55)
49.1% (27/55)
30.9% (17/55)

58.9% (43/73)
63.0% (46/73)
60.3% (44/73)
72.6% (53/73)
71.2% (52/73)
45.2% (33/73)

50.7% (34/67)
56.7% (38/67)
58.2% (39/67)
71.6% (48/67)
55.2% (37/67)
38.8% (26/67)

Llama 3.1 (405B) | 62.4% (53/85) | 43.6% (24/55) | 60.3% (44/73) | 49.3% (33/67)

are all struggling with CEE 418 with very low ACC. In general, the questions from CEE 418 are quite
challenging for LLMs. As the most recent LLM, Claude 3.5 Sonnet significantly outperforms GPT-4,
GPT-40, Gemini 1.5 Pro, and Llama 3.1 on CEE 418, demonstrating its superior capabilities in handling
more advanced topics in transportation engineering. The following example showcases the impressive
reasoning capabilities of Claude 3.5 Sonnet on CEE 418 (we note that Claude 3.5 Sonnet is the only
model that gives a correct final answer as well as some plausible reasoning).’

Claude 3.5 Sonnet on CEE 418: Problem 10.42 from TransportBench

Input: In a grid transit network, for realistic analysis/design, how does the optimal stop spacing
change if we optimize the average passenger travel time instead of the worst-case passenger
travel time? Quantify the change.

Claude 3 Sonnet: To analyze this change in optimal stop spacing, let’s consider the key factors
and how they differ between optimizing for average travel time versus worst-case travel time.
Let’s break this down step-by-step: 1. Key factors:... 4. Mathematical approach: Let’s use a
simplified model to quantify the difference. Assume: - A linear route with uniform passenger
density - Walking speed: v, - Vehicle speed between stops: v,, - Time lost per stop (deceleration,
boarding, acceleration): t;. Let the stop spacing be S. 5. Worst-case optimization: The worst-
case walking distance is S/2. Total travel time = (S/2) /vy, + L/v, + (L/S) xts Where L is the
total trip length. Optimizing this gives an optimal stop spacing of: Sy,orst = Sqrt(2%v, *ts/vy,).
6. Average-case optimization: The average walking distance is S/4. Average travel time =
(S/4)/vy + L/v, + (L/S) * ts. Optimizing this gives an optimal stop spacing of: Sg,g =
5qrt(4 % vy * ts/vy). 7. Quantifying the change: Sgug/Sworst = sqrt(4/2) = sqrt(2) ~ 1.41.
This simplified analysis suggests that optimizing for average travel time results in stop spacing
that is approximately 41% larger than when optimizing for worst-case travel time.

True or False vs. General Q&A:. Next, we discuss how the problem type affects the LLM performance.
The TransportBench consists of True or False problems and general Q&A problems. Intuitively, True or
False problems are easier than more general Q&A problems. Thus it would be interesting to compare
the performance of the LLMs on the two categories. We report the ACC of the seven evaluated LLMs
for each problem type in Table 3. For most LLMs tested by our study, we can observe the consistently

2One shall note that while the conclusion of “41% larger" is correct, the reasoning is not perfect — the calculation should
have considered walking on both the origin and the destination ends of the trip, and the total expected walking distance should
have been S and S/2 for a worst-case and an average passenger, respectively. This finding motivates us to investigate deeper
into LLMSs’ reasoning behavior in later sections.



lower ACC scores for general Q&A problems compared to True or False problems. This implies that for
many LLMs, the True or False problems from TransportBench are easier than the general Q&A problems.
Gemini 1.5 Pro achieves high ACC for True or False problems, but its performance significantly degrades
on general Q&A problems. Noticeably, Claude 3.5 Sonnet achieves similar ACC for both general Q&A
problems (71.6%) and True or False problems (72.6%). As the most recent commercial LLM, it has
shown impressive improvements on general Q&A problems.

4. Evaluating Consistency of LLLMs on True or False Problems

Although (zero-shot) accuracy provides a pivotal metric for initial assessments of LLLM capabilities,
it alone does not provide a true reflection of the intelligence level of LLMs. In this section, we will
study another important aspect, namely the consistency of LLMs (Wang et al., 2022; Liang et al., 2024).
Conceptually, consistency refers to uniform, reliable, and logically coherent responses that maintain the
same principles and reasoning across different inquiries. Consistency can be measured in many different
ways. In this section, we study the consistency of LLMs on the True or False problems in the following
two settings.

» Zero-shot consistency: Firstly, we independently test multiple trials of each problem in the zero-
shot setting and examine whether LLMs will generate the same answer (either all true or all false).
This setting is intuitive and can be illustrated by the following example where Claude 3.5 Sonnet
generates inconsistent answers for different independent inquiries. The correct answer is false.

Inconsistency in the Zero-Shot Setting: Problem 10.11 from TransportBench

Input: Sufficiently large buses (infinite capacity) are used to provide shuttle service, and
we always optimize dispatch frequency based on the demand. As the temporal demand
distribution becomes more uneven (i.e., heterogeneous over time, but no change in total
number of passengers), the total (agency + user) cost increases. True or False?

Claude 3.5 Sonnet (Trial 1): To answer this question, let’s think through it step by step...
I believe the statement is False. While it’s true that a more uneven demand distribution
might lead to some inefficiencies, the ability to optimize dispatch frequency and the as-
sumption of infinite capacity buses should allow for maintaining optimal or near-optimal
total costs. The increased costs during peak times would likely be offset by decreased
costs during off-peak times.

Claude 3.5 Sonnet (Trial 2): To answer this question, let’s think through it step by step:
1) First, let’s consider what factors influence the total cost:- Agency costs: primarily re-
lated to the number of buses operated - User costs: primarily related to waiting time 2) In
an optimized system, the dispatch frequency is adjusted based on demand. This means: -
During high demand periods, buses are dispatched more frequently - During low demand
periods, buses are dispatched less frequently...6) Overall effect: - Agency costs might
increase slightly due to the need for a larger fleet- User costs are likely to increase due
to longer average waiting times - The total cost, being the sum of agency and user costs,
would therefore increase. Conclusion: True. As the temporal demand distribution be-
comes more uneven, the total (agency + user) cost is likely to increase, primarily due to
increased user waiting times during off-peak periods and potentially higher agency costs
for maintaining a larger fleet.

* Consistency under self-checking prompts: Secondly, we examine whether LLMs will generate
consistent answers and reasoning when they are prompted to double check their original answers.
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Table 4: Zero-shot consistency of LLMs

LLMs Aggregate ACCT MRR |
GPT-4 63.8% 23.3%
GPT-40 65.5% 23.3%
Claude 3 Opus 60.8% 24.7%
Claude 3.5 Sonnet 75.6% 8.2%

Gemini 1.5 Pro 70.9% 26.0%
Llama 3 (70B) 49.8% 4.1%

Llama 3.1 (405B) 60.5% 12.3%

It has been recognized from the LLM literature that sometimes LL.Ms can correct their mistakes if given
simple self-checking prompts, such as "carefully check your solutions" (Huang et al., 2022; Kevian et al.,
2024). However, providing such prompts can also cause the LL.Ms to flip their original correct answers.
The second self-checking setting studies such consistency issues and incorporates some basic interac-
tions between LLMs and human users. We will provide more details for the self-checking setting later.

On zero-shot consistency of LLMs, we test all the LLMs via five independent trials of each of
the 73 True or False problems in TransportBench, and report two metrics: (i) Mixed Response Rate
(MRR) in the zero-shot setting, which is the percentage of the True or False problems that received
mixed responses (non-identical answers) in any of the five trials; and (ii) aggregate ACC, which is the
proportion of the trials where LLMs give the correct true or false label over the total 73 x 5 = 365 trials.
The results are reported in Table 4. Notice that a low MRR means that LLMs are consistent in generating
either correct or incorrect answers in the zero-shot setting. We need to complement this metric by the
aggregate accuracy of LLMs. It is desirable to have high aggregate ACC and low MRR at the same time.
We make the following observations on the zero-shot consistency of LLMs.

* Llama 3 achieves the lowest MRR. However, the aggregate ACC for Llama 3 is also the lowest.
This means that Llama 3 has strong bias in answering TransportBench questions and consistently
generate wrong answers. After taking a closer look at the responses generated by Llama 3, we
realize that Llama 3 reports True for almost 90% of the total problem trials. This implies that
Llama 3 does not master the technical concepts from transportation engineering.

* Llama 3.1 also has a low MRR and achieves higher aggregate ACC than Llama 3 (the aggregate
ACC of Llama 3.1 is comparable to GPT-4 and GPT-40). After examining the response from
Llama 3.1 more carefully, we realize that Llama 3.1 has only improved the understanding of the
materials from CEE 310 in comparison to Llama 3. We further calculate the aggregate ACC of
Llama 3.1 for the T/F problems from CEE 310, which is equal to 63%. In contrast, the aggregate
ACC of Llama 3.1 for the T/F problem from CEE 418 is only 56.3%. Llama 3.1 is performing
reasonably well on the T/F problems for CEE 310. However, when answering the T/F problems
from CEE 418, Llama 3.1 still tends to give True most of the time. This implies that Llama 3.1
has not mastered the materials from CEE 418 yet. It will be interesting to see whether the next
version of the Llama model still has this biased behaviors for CEE 418.

* Claude 3 Sonnet achieves the highest aggregate ACC while maintaining a very low MRR. In this
zero-shot setting, Claude 3 Sonnet can be considered as the state-of-the-art model for solving
TransportBench problems.

From the MRR values, we can see that most LLMs including GPT-4, GPT-40, Claude 3 Opus, and
Gemini 1.5 Pro are not very consistent in giving true/false labels in the zero-shot setting. How to
improve their consistency remains open research issues, which should be addressed in the future.



* The aggregate ACC trend is quite consistent with the original ACC results in Table 3. Overall, it
is fair to claim that LLMs have shown promise in solving transportation system problems.

When LLMs are prompted to self-check their initial answers, their accuracy may or may not improve.
The following example illustrates the self-checking setting and showcases that sometimes LLMs can
correct their own mistakes in such a self-checking setting.

Correction via Self-checking: Problem 10.12 from TransportBench

Input: The agency is trying to decide whether to design a hub-and-spoke network or a grid net-
work to serve a city with uniformly distributed passenger O/D demand. As agency investment
(total service route length per unit area) approaches infinity, these two types of networks eventu-
ally yield the same expected door-to-door passenger travel time. True or False?

Claude 3.5 Sonnet: Let’s think through this step-by-step: 1) First, let’s consider what hub-and-
spoke and grid networks look like: - Hub-and-spoke: Central hub with routes radiating outward
like spokes - Grid: Parallel and perpendicular routes forming a grid pattern 2) As investment ap-
proaches infinity, we can assume: - The number of routes (spokes or grid lines) would approach
infinity - The spacing between routes would approach zero 3) In a hub-and-spoke network with
infinite investment: - Every point would essentially have a direct connection to the hub - From
the hub, there would be a direct connection to every other point 4) In a grid network with infinite
investment: - The grid would become infinitely fine - Any two points would be connected by
an almost straight line path 5) Door-to-door travel time in both cases: - As the network den-
sity approaches infinity, the path between any two points approaches a straight line - The travel
time would approach the time it takes to travel in a straight line between origin and destina-
tion 6) Therefore, with infinite investment, both network types would provide essentially direct,
straight-line paths between any two points, resulting in the same expected door-to-door travel
time. Conclusion: True.

Input: Carefully check your solutions.

Claude 3.5 Sonnet: You're right to ask me to carefully check my solution. Let’s review this
problem more critically: 1) The key aspects to consider are: - Network structure (hub-and-spoke
vs. grid) - Uniformly distributed passenger O/D (origin/destination) demand - Infinite investment
(total service route length per unit area approaching infinity) - Expected door-to-door passenger
travel time 2) Hub-and-spoke network with infinite investment: - As investment approaches
infinity, the number of spokes would approach infinity - However, all trips not beginning or
ending at the hub still require a transfer at the hub - This transfer time doesn’t disappear, even
with infinite investment 3) Grid network with infinite investment: - As investment approaches
infinity, the grid becomes infinitely fine - Any two points can be connected by an almost straight
line path - No transfers are necessary 4) Door-to-door travel time comparison: - Grid network:
Approaches direct, straight-line travel time - Hub-and-spoke network: Approaches straight-line
travel time plus transfer time at the hub 5) Critical realization: - The transfer time at the hub in
the hub-and-spoke network creates a persistent difference in expected door-to-door travel time
compared to the grid network. Upon careful reconsideration, I realize my previous conclusion
was incorrect. Revised conclusion: False. As agency investment approaches infinity, the hub-
and-spoke network will still require transfers for many trips, resulting in longer expected door-
to-door passenger travel times compared to the grid network.

In the above example, Claude 3.5 Sonnet is capable of correcting its original mistake and identifying
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that the key to this question is that the presence of a hub in hub-and-spoke networks imposes circuity
that cannot be avoided even with an infinite route length — i.e., the majority of passengers must make
a transfer at the hub, which often implies detours. Even though it might be better to say “no detours are
necessary” (instead of “no transfers are necessary") and avoid "straight-line paths" in the discussion of
grid networks, this example demonstrates the potential benefits of using self-checking prompts.

However, in the self-checking setting, LL.Ms may also misadjust their original correct answers and
start to generate inconsistent true/false labels. This is illustrated by the following example.

Inconsistency in the Self-Checking Setting: Problem 6.3 from TransportBench

Input: In all stationary traffic, time-mean speed equals space-mean speed. True or False?

Claude 3.5 Sonnet: False. In stationary traffic conditions, time-mean speed and space-mean
speed are generally not equal. Here’s a brief explanation: 1. Time-mean speed is the arithmetic
average of speeds of vehicles passing a fixed point over a period of time. 2. Space-mean speed
is the harmonic mean of speeds of vehicles over a given length of road at an instant in time. 3.
In most cases, time-mean speed is higher than space-mean speed. 4. The difference between
these two measures tends to increase with greater speed variability among vehicles. 5. Even in
stationary traffic (where traffic conditions are stable over time), there can still be variations in
individual vehicle speeds, leading to a difference between time-mean and space-mean speeds.
The equality of time-mean and space-mean speeds occurs only in the special case where all
vehicles are traveling at exactly the same speed, which is rarely the case in real traffic conditions,
even when stationary.

Input: Carefully check your solutions.

Claude 3.5 Sonnet: Thank you for asking me to carefully check my solution. Upon review,
I realize I need to correct my previous statement. You're right to question this, as my initial
response was incorrect. Let me provide the correct answer: True. In stationary traffic, time-
mean speed does equal space-mean speed. Here’s the explanation: 1. Stationary traffic refers
to a condition where the statistical properties of traffic flow do not change over time. 2. In
such conditions, the distribution of speeds at a fixed point (used for time-mean speed) would be
the same as the distribution of speeds over a section of road at an instant (used for space-mean
speed). 3. When the traffic is stationary, the variability that usually causes the difference between
time-mean and space-mean speeds is eliminated. 4. Therefore, in this specific case of stationary
traffic, the two measures converge and become equal. I apologize for my initial error. This is an
important concept in traffic flow theory, and I'm glad you prompted me to double-check. It’s a
good reminder of the specific conditions under which these two measures can be equal.

In the above example, Claude 3.5 Sonnet obtains the correct final answer initially in the zero-shot setting
(despite the flawed statement in step 2; see a related error to Problem 6.13 in Section 5.3), and then the
self-checking prompt makes it change the conclusion to a wrong one. Interestingly, Claude 3.5 Sonnet
is zero-shot consistent for this problem, i.e. it generates correct final answers for the five independent
trials in the zero-shot setting. However, the self-checking prompt becomes some disturbance that causes
Claude 3.5 Sonnet to start giving inconsistent behaviors. Hence zero-shot consistency and the consis-
tency in the self-checking setting are not equivalent. The interactions between LLMs and human users
can lead to unexpected inconsistent behaviors that cannot be observed in a zero-shot setting.

In light of the above discussion, we next provide a complementary perspective on consistency of
LLMs using two metrics. The first metric is self-checking accuracy (denoted as ACC-5), which quan-
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Table 5: Accuracy (ACC) and Absolute Self-Checked Accuracy (ACC-35) of LLMs on the True or False prob-
lems. The best results for each metric are highlighted in bold.

Accuracy Incorrect flips
LLMs ACC T ACC-51 CEE-418 | CEE-310J Total |
GPT-4 58.9% (43/73)  68.5% (50/73) 3 1 4
GPT-40 63.0% (46/73)  68.5% (50/73) 2 4 6
Claude 3 Opus 60.3% (44/73)  49.3% (36/73) 16 18 34
Claude 3.5 Sonnet | 72.6 % (53/73) 67.1% (49/73) 8 8 16
Gemini 1.5 Pro 71.2% (52/73)  46.6% (34/73) 11 20 31
Llama 3 (70B) 45.2% (33/73)  56.2% (41/73) 11 11 22
Llama 3.1 (405B) | 60.3% (44/73)  54.8% (40/73) 12 13 25

tifies the instances in which LLMs give correct answers after the self-checking process. Notice that
ACC-5 does not have to be higher than ACC. For an LLM which responds very inconsistently to the
self-checking prompts, ACC-5 can actually be lower than the original ACC in the zero-shot setting due
to flipping the initial correct answers. The second metric is the number of the True or False problems in
which the LLMs flip the original correct answers to wrong ones. The number of incorrect flips can give
a more direct illustration on the extent of the inconsistency in the self-checking setting. For a consistent
LLM, we ideally want ACC-5 to be higher than ACC and the number of incorrect flips to be low. Now
we present both metrics for GPT-4, GPT-40, Claude 3 Opus, Claude 3.5 Sonnet, Gemini 1.5 Pro, Llama
3, and Llama 3.1 in Table 5. We make the following observations.

* GPT-40 and GPT-4 are the only two models whose accuracy is benefited from the self-checking
prompts. For all other models including Claude 3.5 Sonnet, the number of incorrect flips is larger
than the number of correct flips. The number of incorrect flips for GPT-4 and GPT-4o0 is very low.
Therefore, in the self-checking setting, GPT-4 and GPT-40 are the most consistent.

* Given self-checking prompts, Claude 3.5 Sonnet is still more consistent than Claude 3 Opus,
Gemini 1.5 Pro, Llama 3, and Llama 3.1, but less consistent than GPT-4 and GPT-40. Therefore,
for transportation engineering tasks involving human interactions, it is unclear whether one should
still view Claude 3.5 Sonnet as the state-of-the-art LLM.

* Claude 3 Opus, Gemini 1.5 Pro, Llama 3, and Llama 3.1 all make many incorrect flips. It seems
natural for us to question whether these models really master the concepts involving in our True
or False problems.

Overall, we can see that evaluating the consistency of LLMs is actually quite subtle. In the zero-shot
setting, Claude 3.5 Sonnet is the most consistent model. However, in the self-checking setting, GPT-4
and GPT-40 are both more consistent than Claude 3.5 Sonnet. There are many other settings where the
consistency of LLMs. can be tested. For instance, one can rephrase each problem in various tricky ways
and then test whether LLMs will be able to answer all the variants correctly. Our analysis is just a starting
point, and future efforts are needed to address the consistency of LLLMs in a comprehensive manner.

5. Reasoning Behaviors of LLLMs on TransportBench

One impressive observation from our study is that LLMs have started to show promise in reasoning
for transportation engineering problems, e.g., sometimes they can provide seemingly correct reasons for
their True/False labels or solutions to general Q&A questions. This observation aligns well with the large
body of literature discussing the promise of LLM reasoning across various domains (Wei et al., 2022b;
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Huang and Chang, 2022; Zhou et al., 2022; Sun et al., 2023; Havrilla et al., 2024). However, alongside
the promise of LLM reasoning, there are potential drawbacks and unresolved issues. For instance, recent
work has identified potential breakdowns of LLM reasoning on very simple common-sense problems
(Nezhurina et al., 2024). In this section, we perform a case study of LLM reasoning based on examining
LLM responses on TransportBench more carefully. We will discuss various interesting observations
on the reasoning behaviors of LLMs in answering transportation engineering problems. Importantly,
despite the promise, LLMs can make various subtle reasoning errors.

5.1. Claude 3.5 Sonnet vs. Claude 3 Opus: Reasoning before conclusion matters

As seen previously, Claude 3.5 Sonnet has improved the accuracy of Claude 3 Opus on Transport-
Bench. In this section, we will examine the role of reasoning in this improvement for the True or False
problems. We will start from the following intriguing example.

Claude 3.5 Sonnet vs. Claude 3 Opus: Problem 6.5 from TransportBench

Input: In traffic, density = 1 / headway. True or False?

Claude 3.5 Sonnet: To answer this question accurately, let’s break down the concepts and their
relationship: 1. Traffic density: This is typically defined as the number of vehicles per unit
length of road. 2. Headway: In traffic engineering, headway usually refers to the time interval
between vehicles passing a point on the road. Given these definitions, the statement "density =1/
headway" is not precisely correct. Here’s why: 1. Units mismatch: Density is typically measured
in vehicles per unit length (e.g., vehicles/km), while headway is measured in time (e.g., seconds).
The reciprocal of time wouldn’t directly give us vehicles per unit length. 2. Relationship: While
there is a relationship between density and headway, it’s not as simple as a direct reciprocal.
The correct relationship involves speed as well. The more accurate relationship is: Density =
Flow / Speed Where: - Flow is measured in vehicles per unit time (e.g., vehicles/hour) - Speed
is measured in distance per unit time (e.g., km/hour) - Resulting in Density as vehicles per unit
distance (e.g., vehicles/km). Headway is related to flow: Flow = 1 / Headway. Therefore, the
statement "In traffic, density = 1 / headway" is False.

Claude 3 Opus: True. In traffic flow theory, density is defined as the number of vehicles per unit
length of the roadway. Headway, on the other hand, is the time or distance between successive
vehicles. Mathematically, density (k) is the inverse of headway (h), expressed as: k = 1/h. This
relationship assumes a uniform headway between vehicles. In reality, headways can vary, and
the density is often calculated as an average over a roadway segment.

Input (Modified): In traffic, density = 1 / time headway. True or False?

Claude 3 Opus: True. In traffic engineering, density is defined as the inverse of the average
time headway between vehicles. Time headway is the time elapsed between the front of a leading
vehicle passing a point on the roadway and the front of the following vehicle passing the same
point. It’s usually measured in seconds. So the formula is: Density = 1 / Average Time Headway,
where density is measured in vehicles per unit time (often vehicles per hour) and average time
headway is measured in units of time per vehicle (often seconds per vehicle). This relationship
allows traffic engineers to estimate traffic density by measuring the time gaps between vehicles
at a specific point on the road.

At a first glance, it seems that given the original problem statement, Claude 3.5 Sonnet knows the correct
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relationship between traffic density and headway, while Claude 3 Opus does not. In the concurrent
transportation literature, “headway” by default refers to “time headway;” i.e., the time that elapses
between the arrival of two consecutive vehicles at a certain location (Daganzo, 1997; Trans Res Board,
2000). Some earlier transportation documents used the obsolete term “space headway” (or “distance
headway”’), which refers to the distance between two consecutive vehicles at a certain time, which has
been replaced by “spacing”. It seems that sometimes Claude 3 Opus cannot distinguish between “space
headway” and “headway.” However, even if we explicitly state “time headway" in the problem statement,
Claude 3 Opus still cannot give the correct conclusion. After taking a closer look at the above example,
we notice that Claude 3.5 Sonnet first provided a detailed reasoning process before giving the final
conclusion, while Claude 3 Opus first gave a conclusion and then provided some explanations to justify
the answer. This motivates us to make two modifications to the original problem, as shown below.

Reasoning Matters: Adding Prompts to Problem 6.5 from TransportBench

Input (Modification 1): In traffic, density = 1 / headway. True or False? Provide detailed
reasoning before giving the final conclusion.

Claude 3 Opus: To determine if the statement "In traffic, density = 1 / headway" is true or false,
let’s first define the terms and explore their relationship: Traffic Density: Traffic density is the
number of vehicles occupying a given length of a highway or road. It is usually expressed as
vehicles per kilometer or vehicles per mile. Headway: Headway is the time gap between the
front of a leading vehicle and the front of the following vehicle, measured at a specific point
on the road. It is usually expressed in seconds. The fundamental relationship between density
and headway is: density = flow / speed where: - density is the traffic density (vehicles/km
or vehicles/mile) - flow is the traffic flow rate (vehicles/hour) - speed is the average speed of
the vehicles (km/hour or miles/hour). Assuming a constant flow rate, the relationship between
headway and flow is: headway = 1 / flow. Substituting this into the density equation, we get:
density = flow / speed = (1 / headway) / speed. Therefore, the statement "density = 1 / headway"
is false. The correct relationship is: density = (1 / headway) / speed. In other words, density
is inversely proportional to both headway and speed. As headway decreases (vehicles become
closer together), density increases, assuming a constant speed. However, density is not simply
the reciprocal of headway, as the statement suggests.

Input (Modification 2): In traffic, density = 1 / headway. True or False? Explain your answer.

Claude 3.5 Sonnet: True. Let me explain why this statement is correct: 1. Definition of terms:
- Density: The number of vehicles per unit length of road (usually vehicles per kilometer or
mile) - Headway: The time or distance between two consecutive vehicles in a traffic stream. 2.
Relationship: - Headway is typically measured in time (seconds) or distance (meters or feet) -
Density is the inverse of the average space headway. 3. Explanation: - If we consider a uniform
traffic flow where all vehicles are evenly spaced: - A longer headway means fewer vehicles in a
given length of road (lower density) - A shorter headway means more vehicles in a given length
of road (higher density) - Mathematically, we can express this as: Density = 1 / (Average space
headway) - Note: When using time headway, you need to factor in the speed to convert it to
space headway: Density = 1 / (Speed * Average time headway). 4. Example: - If the average
headway is 50 meters between vehicles: Density = 1 / 50 meters = 0.02 vehicles per meter = 20
vehicles per kilometer. This inverse relationship between density and headway is fundamental
in traffic flow theory and is used in various traffic engineering calculations and models.
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First, we give the prompt “provide detailed reasoning before giving the final conclusion” to Claude 3
Opus. All of a sudden, Claude 3 Opus can answer this question correctly. It correctly points out that
headway is the time gap between the front of a leading vehicle and the front of the following vehicle,
measured at a specific point on the road. Next, we give the prompt “explain your answer" to Claude 3.5
Sonnet such that it will first give a True or False label. Now Claude 3.5 Sonnet struggles with the concept
“headway" (it defines headway to be the time or distance between two consecutive vehicles in a traffic
stream). From these behavior changes, it seems that LLMs are more likely to distill the right knowledge
when asked to provide detailed reasoning before giving the conclusion. This intuitively makes sense
with our understanding that LLMs generate their response based on text strings in an autoregressive
left-to-right manner. A similar example is shown as follows (the correct answer is False).

Reasoning matters: Problem 6.7 from TransportBench

Input: In a cumulative diagram for a traffic network, the horizontal separation between the
departure and the arrival curves gives the number of vehicles between the two observers. True
or False?

Claude 3.5 Sonnet Opus: To answer this question accurately, let’s think through it step by step:
1) First, let’s ...7) The horizontal separation, on the other hand, does not directly represent the
number of vehicles. It represents a time difference. Given this analysis, we can conclude: False.

Claude 3 Opus: True. In a cumulative diagram for a traffic network, the vertical axis represents
the cumulative number of vehicles, while the horizontal axis represents time. The diagram
typically shows two curves: one for the departure of vehicles at an upstream location and another
for the arrival of those vehicles at a downstream location. The horizontal separation between
these two curves at any given point in time represents the number of vehicles that have departed
the upstream location but have not yet arrived at the downstream location. In other words, it
shows the number of vehicles that are currently traveling between the two observation points at
that specific time. This principle is used in traffic flow analysis to understand the distribution of
vehicles along a road segment and to identify potential bottlenecks within the network.

Input (Modification 1): In a cumulative diagram for a traffic network, the horizontal separation
between the departure and the arrival curves gives the number of vehicles between the two
observers. True or False? Provide detailed reasoning before giving the final conclusion.

Claude 3 Opus: To determine whether the given statement is true or false, let’s first understand
what a cumulative diagram is and how it represents traffic flow. . .In conclusion, the given state-
ment is false. The horizontal separation between the departure and arrival curves in a cumulative
diagram represents travel time, while the vertical separation represents the number of vehicles
between the two observation points.

Input (Modification 2): In a cumulative diagram for a traffic network, the horizontal separation
between the departure and the arrival curves gives the number of vehicles between the two
observers. True or False? Explain your answer.

Claude 3.5 Sonnet: True. Let me explain why this statement is correct. . .

The above example again highlights the potential important role of LLM reasoning for generating correct
final conclusions. While the prompt “provide detailed reasoning before giving the final conclusion" is
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not a universal fix to many LLM errors, the order of reasoning and conclusion generation sometimes
matters.

5.2. Correct final answers may come from flawed reasoning approaches

The next important observation is that LLMs can make unclear/flawed reasoning to generate correct
final conclusions for certain problems, giving illusions on their proficiency in transportation system
topics. We have seen this issue with some of the examples in Section 3. The following example provides
a clear illustration for this.

Flawed Reasoning with Correct Conclusion: Problem 10.55 from TransportBench

Input: A bus line runs from 5 am to midnight. In each direction, the line has 40 stops and is
12 km long. The bus cruising speed is 30 km/h, and each stop imposes a delay of 15 seconds.
The headway is 10 min during the rush hours (7 am-9 am, and 3 pm-7 pm), and 30 min for the
remainder of the service period. What is the minimum fleet size M needed to run this route?

Claude 3 Sonnet: Let’s approach this problem step by step: 1. Calculate the round-trip time:
- Distance: 12 km X 2 (round trip) = 24 km - Time at cruising speed: 24 km + 30 km/h = 0.8
hours = 48 minutes - Number of stops: 40 x 2 (round trip) = 80 stops - Total delay at stops: 80
x 15 seconds = 1200 seconds = 20 minutes - Total round-trip time: 48 + 20 = 68 minutes. 2.
Determine the number of buses needed during different periods: a) Rush hours (headway = 10
minutes): Buses needed = Round-trip time + Headway = 68 + 10 = 6.8, rounded up to 7 buses
b) Non-rush hours (headway = 30 minutes): Buses needed = 68 + 30 = 2.27, rounded up to
3 buses. 3. Calculate the minimum fleet size: The minimum fleet size will be the maximum
number of buses needed at any time, which is during rush hours. Therefore, the minimum fleet
size M needed to run this route is 7 buses.

Input (Modification 1): A bus line runs from 5 am to midnight. In each direction, the line has
40 stops and is 15 km long. The bus cruising speed is 25 km/h, and each stop imposes a delay
of 15 seconds. The dispatch headway from a terminus (at one end of the route) is 10 min during
the rush hours (7 am-8 am, and 5 pm-6 pm), and 30 min for the remainder of the service period.
What is the minimum fleet size M needed to run this route?

Claude 3 Sonnet: Let’s approach this problem step by step: 1. Calculate the total trip time:
Distance = 15 km, Cruising speed = 25 km/h, Travel time = 15 km + 25 km/h = 0.6 hours =
36 minutes, Stop delay = 15 seconds x 40 stops = 600 seconds = 10 minutes. Total one-way
trip time = 36 + 10 = 46 minutes. 2. Calculate the round trip time: Round trip time =46 x 2 =
92 minutes. 3. Determine the number of buses needed for different headways: For 10-minute
headway (rush hours): Buses needed = Round trip time + Headway = 92/10 = 9.2, Round up to
10 buses. For 30-minute headway (non-rush hours): Buses needed = 92 + 30 = 3.07, Round up
to 4 buses. 4. Determine the minimum fleet size: The minimum fleet size will be the larger of
the two calculated values, which is 10 buses.

In the above example, we first test LLMs on Problem 10.55 from TransportBench. We can see that
Claude 3.5 Sonnet is able to get the correct answer M = 7. However, upon reading the reasoning behind
the answer, we find it to be flawed since it simply computes the “steady-state” vehicle requirements in
peak and off-peak periods separately (and chooses the larger value), but ignores that some of the vehicles
dispatched in the off-peak period could later return from service and become available for use during
the period periods. In other words, LLMs implicitly assume in their reasoning that rush hour service is
run from —oo to oo time. Such a reasoning error is quite subtle and does not affect the final number
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of M = 7 in the original problem, partly because the peak period duration is sufficiently long to offset
the impacts of returned vehicles from the off-peak period. When we modify the problem statement by
shortening the peak period durations, the fleet size requirement should decrease to M = 8 (instead of
10). This time Claude 3.5 Sonnet uses the same reasoning which eventually leads to the wrong answer.
This example highlights the fact that sometimes LLMs can only use a simplistic reasoning path without
fully understanding the physics behind the transportation engineering problem.

Another example can be obtained by examining the general Q&A form of Problem 10.16 from
TransportBench.

True or False vs. General Q&A Versions: Problem 10.16 from TransportBench

Input (True or False Form): The worst-case waiting time of passengers traveling in a two-level
hierarchical corridor transit system (with common headway H ), when they have an appointment
at the destination and know the schedule, is 3H. True or False?

Claude 3 Sonnet: To answer this question, let’s think through it step by step: 1) In a two-level
hierarchical corridor transit system, we typically have: - A main line (trunk line) - Secondary
lines (feeder lines) that connect to the main line. 2) The common headway H means that all lines,
both main and secondary, have the same frequency of service. 3) For a passenger to reach their
destination, they might need to: - Wait for a feeder line - Travel on the feeder line - Transfer to
the main line - Travel on the main line. 4) The worst-case scenario would involve: - Just missing
a feeder line (waiting almost full headway H) - Transferring to the main line (potentially waiting
another full headway H). 5) However, since the passenger knows the schedule, they can time
their arrival at the first stop to minimize waiting time. 6) In the absolute worst case, a passenger
might: - Wait up to H for the feeder line - Just miss the connection to the main line, waiting
another H - Arrive at their destination, potentially waiting up to H for their appointment time. 7)
This worst-case scenario adds up to a total waiting time of 3H. Therefore, the statement is True.

Input (Q&A Form): Calculate the worst-case waiting time of passengers traveling in a two-
level hierarchical corridor transit system (with common headway H), when they have an ap-
pointment at the destination and know the schedule.

Claude 3 Sonnet: To calculate the worst-case waiting time in this scenario, let’s break down the
problem step by step: 1) First, let’s consider what a two-level hierarchical corridor transit system
means: - There are two levels of service: a main line and feeder lines. - Passengers may need to
transfer from a feeder line to the main line. 2) Given information: - The system operates with a
common headway H. - Passengers know the schedule and have an appointment at the destination.
3) In the worst-case scenario: - A passenger just misses a feeder line vehicle. - After taking the
feeder line, they just miss the main line vehicle. - They arrive at their destination just before
their appointment. 4) Worst-case waiting time calculation: a) Wait for feeder line: H b) Travel
time on feeder line: (Let’s call this 7', but it doesn’t affect waiting time) ¢) Wait for main line:
H d) Travel time on main line: (Let’s call this 7},,, but it doesn’t affect waiting time) 5) Total
worst-case waiting time: Wy,orse = H + H = 2H Therefore, the worst-case waiting time for
passengers in this system is 2, where H is the common headway.

For the above example, Claude 3.5 Sonnet gives the wrong value 3H for the worst-case waiting time
when the problem is stated as a True or False problem. The correct reasoning shown in step 5) is ignored
in steps 6) and 7). Interestingly, if we state the problem in a general Q&A form and directly ask for calcu-
lating the worst-case waiting time, Claude 3.5 Sonnet gives the right answer 2H. However, a closer look
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at its reasoning shows that the seemingly correct answer actually comes from two simultaneous mistakes:
assuming waiting time H for the feeder line (which should not be included because the passengers know
the schedule), and ignoring the waiting time H for the appointment (which should be included). Again,
this demonstrates that sometimes LLMs can obtain final correct values with flawed reasoning.

5.3. Simple domain-specific prompts can improve reasoning

Finally, we also notice that sometimes simple domain-specific prompts can notably improve LLM
reasoning. For illustration, consider the following problem.

Simple Domain-Specific Prompts: Problem 4.5 from TransportBench

Input: If the speed of a vehicle keeps increasing, the aerodynamic resistance will eventually
exceed the rolling resistance, because the aerodynamic resistance depends on the velocity of the
vehicle while the rolling resistance does not. True or False?

Claude 3.5 Sonnet: To answer this question, let’s break down the key concepts and their rela-
tionships: 1. Aerodynamic resistance (drag): - Depends on the velocity of the vehicle - Typically
increases quadratically with velocity (proportional to v?) 2. Rolling resistance: - Primarily de-
pends on the weight of the vehicle and road conditions - Generally does not depend on velocity
(or has a very weak dependence). Given these facts, we can conclude: True.

Input (Modified): If the speed of a vehicle keeps increasing, the aerodynamic resistance will
eventually exceed the rolling resistance, because the aerodynamic resistance depends on the
velocity of the vehicle while the rolling resistance does not. True or False? Think about rolling
resistance at different speed values.

Claude 3.5 Sonnet: Let’s think about this step-by-step: 1. Aerodynamic resistance: - Also
known as air resistance or drag - Increases with velocity, typically proportional to the square of
velocity. 2. Rolling resistance: - Caused by the deformation of the wheel and the surface it’s
rolling on - Generally considered to be independent of velocity for low speeds - However, at
higher speeds, rolling resistance does actually increase. 3. Rolling resistance at different speeds:
- At low speeds, rolling resistance is relatively constant - As speed increases, several factors cause
rolling resistance to increase: a. Hysteresis in the tire material increases b. Centrifugal forces
cause tire deformation c. Vibrations in the tire structure increase. 4. Relationship between the
two resistances: - At low speeds, rolling resistance is typically the dominant force - As speed in-
creases, aerodynamic resistance increases more rapidly (proportional to v?) - Rolling resistance
also increases with speed, but not as dramatically as aerodynamic resistance 5. Conclusion:
While it’s true that aerodynamic resistance will eventually exceed rolling resistance as speed in-
creases, the statement as given is not entirely accurate. It’s incorrect to say that rolling resistance
does not depend on velocity. It does, just not as strongly as aerodynamic resistance. Therefore,
the statement is False. A more accurate statement would be: “If the speed of a vehicle keeps
increasing, the aerodynamic resistance will eventually exceed the rolling resistance, because the
aerodynamic resistance increases more rapidly with velocity compared to the rolling resistance."

In the above example, the problem statement is in the form of "A is true, because B and C are true." Both
A and B are true, but C is not — i.e., the rolling resistance does increase with the velocity: it remains
almost constant only “within a range of small speeds," but for higher speeds, it grows as the speed
increases. Claude 3.5 Sonnet fails in catching this reasoning error in the “because” statement and stated
that the rolling resistance is relatively independent of vehicle. It appears that the LLM either jumps to
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the wrong conclusion simply because “A" is true, or it does not recognize the right condition for “C"
to hold. Interestingly, once we give a simple domain-specific prompt “think about rolling resistance at
different speed values," Claude 3.5 Sonnet gives the correct answer under the reason that it is incorrect
to say that rolling resistance does not depend on velocity. Below is another relevant example.

Simple Domain-Specific Prompts: Problem 6.13 from TransportBench

Input: Consider a two-lane highway with stationary traffic. There are two types of vehicles, cars
and trucks, each occupying one lane. Cars travel with constant speed v. and the time headway
between any two consecutive cars is h.. Trucks travel with constant speed v;, and the headway
between any two consecutive trucks is hy.

a. What is the total density (regarding all vehicles) on this highway?
b. What is the space-mean speed?

Claude 3.5 Sonnet: Let’s approach this problem step by step. We’ll start by defining some terms
and then solve each part of the question. Definitions: - Density (k): The number of vehicles per
unit length of the roadway. - Space-mean speed (vs): The harmonic mean of the speeds of
vehicles passing a point on the roadway. Let’s solve each part: a. Total density on the highway:
To find the total density, we need to calculate the density for cars and trucks separately and then
add them together. For cars: - Density of cars (k.) = 1/(v. * h). For trucks: - Density of trucks
(kt) = 1/(vg * hy). Total density (k) = k. + kt = 1/(ve * he) + 1/(vg * hy). b. Space-mean
speed: The space-mean speed is calculated using the harmonic mean of the speeds, weighted by
the proportion of vehicles of each type. Let’s define: - f.: Fraction of cars = k./(k. + k) - fi:
Fraction of trucks = k;/(k.+k;). Space-mean speed (vs) = 1/(f./ve+ f:/vt). Substituting the
fractions: v, = 1/((ke/(kc+kt))/ve+ (kie/(ke+ke))/ve). Simplifying: v = (ke+kt)/ (ke /ve+
k¢/v). Substituting the density expressions: vs = (1/(ve * he) + 1/(vs * b)) /(1/(v2 x he) +
1/(v? * hy)). To summarize: a. Total density: k¥ = 1/(v. * he) + 1/(vs * hy) b. Space-mean
speed: vs = (1/(ve * he) + 1/(ve * he)) /(1) (02 % he) 4+ 1/ (02 * hy))

Input (Modified): Consider a two-lane highway with stationary traffic. There are two types of
vehicles, cars and trucks, each occupying one lane. Cars travel with constant speed v, and the
time headway between any two consecutive cars is .. Trucks travel with constant speed v;, and
the headway between any two consecutive trucks is h;.

a. What is the total density (regarding all vehicles) on this highway?

b. What is the space-mean speed? (Notice that space-mean speed is the arithmetic mean of
vehicle speeds measured from an aerial photo.)

Claude 3.5 Sonnet: Let’s approach this problem step by step: 1) First, let’s define some
variables: k. = density of cars k; = density of trucks k = total density of vehicles 2) Now,
let’s solve each part: a) To find the total density: - For cars: Density = 1 / (speed * head-
way) k. = 1/(ve * he) - For trucks: k; = 1/(v; * hy) - Total density is the sum of these:
k =ke+k =1/(vexhe)+1/(vexhy) b) To find the space-mean speed: The space-mean speed
(vg) is given by: vs = % Where q is the flow rate and k is the total density. - Flow rate for cars:
qe = ke *ve = v/ (ve * he) = 1/h, - Flow rate for trucks: q; = ky * vy = v /(vy x hy) = 1/hy

- Total flow rate: ¢ = g. + ¢ = 1/h. + 1/h;. Now we can calculate the space-mean speed:
_q _ l/hc-i-l/ht _ UC*Ut*(hc-i-ht)
Us =% = 1/(vexhe)+1/(vexhe) —  vexhitvexhe

k =1/(ve * he) + 1/(vg * hy) b) Space-mean speed: vg =

. Therefore, the final answers are: a) Total density:

vekve*(he+hi)
vekhi+vekhe
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For the above example, Claude 3.5 Sonnet can compute the total vehicle density for a two-lane highway,
but reasons incorrectly to compute the space-mean speed. In all of our trials, it repeatedly states that the
space-mean speed is “the harmonic mean of the individual speeds, weighted by the proportion of vehicles
of each type." And then it uses the densities of the two vehicle types as the weights. This is wrong,
however, since harmonic mean shall be used only when speeds are weighted by the flow of either vehicle
type (as if speed samples are collected by a roadside observer); while arithmetic mean should be used
directly when speeds are weighted by density (as if speed samples are collected from an aerial video).
This example shows that Claude 3.5 Sonnet has not fully understood the subtle connection between the
space-mean speed formula and the way speed samples are collected. In light of this observation, we try to
give the domain-specific prompt “space-mean speed is the arithmetic mean of vehicle speeds measured
from an aerial photo." Then, Claude 3.5 Sonnet is able to avoid the “harmonic mean" + “weighted by
density" trap, and come up the correct reasoning.

From the above examples, we can see that simple domain-specific prompts may be quite useful
in helping LLMs improve their reasoning in the domain of transportation engineering. An interesting
future research direction is to design systematic principled prompts for bigger classes of transportation
engineering problems.

6. Conclusion and Future Work

In this paper, we introduce the TransportBench dataset for the purpose of benchmarking the capabil-
ities of leading LL.Ms in solving undergraduate-level transportation engineering problems. Our bench-
mark study highlights Claude 3.5 Sonnet as the most proficient model in this domain. Our findings
demonstrate the strong potential and promise of using leading LLMs to revolutionize problem solving
in the field of transportation engineering. In particular, it appears that current LLMs are quite capable
of memorizing facts and technical definitions, connecting related concepts, and integrating simple sym-
bolic derivations into basic logical reasoning — as a result, they perform relatively well on True/False
problems and some of the simpler general Q&A problems. However, careful assessments by domain ex-
perts have also illuminated the limitations of these LLMs, particularly noting the necessity for improved
reasoning and explanatory capabilities before they can be used for practical problems in real-world ap-
plications. Once the problems require more detailed analysis of the underlying physical processes (e.g.,
the bus fleet size problem 10.55), or when they require a deeper understanding of subtle concepts or
statements (e.g., the space-mean speed problem 6.13(b), or the rolling resistance problem 4.5), LLMs
seem to face notable difficulties.

Looking ahead, we feel that future research on LLM applications in transportation engineering
should focus on (i) enhanced pre-training, finetuning, and evaluations with expanded transportation
systems problem datasets, especially with more general Q&A problems in additional subject areas and
at more advanced (senior or graduate) levels; (ii) systematic study of domain-specific prompting and
in-context learning for solving more complex transportation engineering tasks, possibly by holistically
categorizing basic solution steps or approaches for various transportation problems and passing those
high-level information to LLMs; (iii) developing reliable LLM agents with strong tool-use abilities such
as leveraging external coding tools or specialized modeling or simulation platforms for sub-domains
like geometric design, network analysis, traffic management, and demand modeling; (iv) improving
LLM reasoning for transportation engineering via development and integration of advanced search algo-
rithms (e.g., Tree-of-Thoughts (Yao et al., 2024), Reasoning-via-Planning (Hao et al., 2023), etc.) with
domain knowledge; and (v) exploring the potential use of LLMs in interdisciplinary areas that connect
transportation engineering to other related domains such as urban and regional planning, other civil en-
gineering subfields’ (e.g., hydrology, construction), and other engineering disciplines (e.g., mechanical
engineering, electrical engineering, computer science), and broadly, other sciences (e.g., social science,

3For instance, LLMs have already been recently used in areas such as water engineering (Xu et al., 2024).
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climatology). By advancing research in these directions, we can further harness AI’s capabilities to help
human experts transform the future transportation engineering, ultimately leading to smarter, safer, and
more sustainable transportation systems.
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